×

Self-adjoint extensions of the two-valley Dirac operator with discontinuous infinite mass boundary conditions. (English) Zbl 1462.35212

Summary: We consider the four-component two-valley Dirac operator on a wedge in \(\mathbb{R}^2\) with infinite mass boundary conditions, which enjoy a flip at the vertex. We show that it has deficiency indices \((1,1)\) and we parametrize all its self-adjoint extensions, relying on the fact that the underlying two-component Dirac operator is symmetric with deficiency indices \((0,1)\). The respective defect element is computed explicitly. We observe that there exists no self-adjoint extension, which can be decomposed into an orthogonal sum of two two-component operators. In physics, this effect is called mixing the valleys.

MSC:

35P05 General topics in linear spectral theory for PDEs
35Q40 PDEs in connection with quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] N. ARRIZABALAGA, L. LETREUST ANDN. RAYMOND,On the MIT bag model in the nonrelativistic limit, Comm. Math. Phys.354(2017), 641-669. · Zbl 1373.81422
[2] N. ARRIZABALAGA, A. MAS ANDL. VEGA,Shell interactions for Dirac operators, J. Math. Pures Appl.102(2014), 617-639. · Zbl 1297.81083
[3] J. BEHRNDT, P. EXNER, M. HOLZMANN ANDV. LOTOREICHIK,On the spectral properties of Dirac operators with electrostaticδ-shell interactions, J. Math. Pures Appl.111(2018), 47-78. · Zbl 1382.81095
[4] J. BEHRNDT, P. EXNER, M. HOLZMANN ANDV. LOTOREICHIK,On Dirac operators inR3with electrostatic and Lorentz scalarδ-shell interactions, Quantum Stud. Math. Found.6(2019), 295-314. · Zbl 1423.81072
[5] J. BEHRNDT, M. HOLZMANN, T. OURMIERES‘-BONAFOS ANDK. PANKRASHKIN,Twodimensional Dirac operators with singular interactions supported on closed curves, J. Funct. Anal. 279(2020), 108700. · Zbl 1446.35155
[6] B. CASSANO ANDF. PIZZICHILLO,Self-adjoint extensions for the Dirac operator with Coulomb-type spherically symmetric potentials, Lett. Math. Phys.108(2018), 2635-2667. · Zbl 1403.81017
[7] B. CASSANO ANDF. PIZZICHILLO,Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations, J. Math. Phys.60(2019), 041502. · Zbl 1414.81086
[8] P. EXNER,Momentum operators on graphs, in “Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy’s 60th Birthday” (H. Holden, B. Simon, G. Teschl, eds.), Proc. Symp. Pure Math.,87, AMS, Providence, R.I.; (2012) pp. 105-118. · Zbl 1325.05105
[9] P. EXNER ANDP.SˇEBA,A simple model of thin-film point contact in two and three dimensions, Czechoslovak J. Phys. B38(1988), 1095-1110.
[10] M. HOLZMANN, T. OURMIERES‘-BONAFOS ANDK. PANKRASHKIN,Dirac operators with Lorentz scalar interactions, Rev. Math. Phys.30(2018), 1850013. · Zbl 1393.35194
[11] L. LETREUST ANDT. OURMIERES‘-BONAFOS,Self-adjointness of Dirac operators with infinite mass boundary conditions in sectors, Ann. Henri Poincar´e19(2018), 1465-1487. · Zbl 1388.81108
[12] M. MARLETTA ANDG. ROZENBLUM,A Laplace operator with boundary conditions singular at one point, J. Phys. A42(2009), 125204, 11 pp. · Zbl 1181.35158
[13] W. MCLEAN,Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000. · Zbl 0948.35001
[14] S. A. NAZAROV ANDN. POPOFF,Self-adjoint and skew-symmetric extensions of the Laplacian with singular Robin boundary condition, C. R. Math. Acad. Sci. Paris356(2018), 927-932. · Zbl 1429.35072
[15] A. C. NETO, F. GUINEA, N. M. PERES, K. S. NOVOSELOV ANDA. K. GEIM,The electronic properties of graphene, Rev. Mod. Phys.81(2009), 109-162.
[16] T. OURMIERES‘-BONAFOS ANDF. PIZZICHILLO,Dirac operators and shell interactions: a survey, to appear in Mathematical Challenges of Zero-Range Physics (Springer INdAM Series).
[17] T. OURMIERES‘-BONAFOS ANDL. VEGA,A strategy for self-adjointness of Dirac operators: applications to the MIT bag model andδ-shell interactions, Publ. Mat.62(2018), 397-437. · Zbl 06918953
[18] F. PIZZICHILLO ANDH. VANDENBOSCH,Self-Adjointness of two dimensional Dirac operators on corner domains, arXiv:1902.05010.
[19] M. REED ANDB. SIMON,Methods of modern mathematical physics. vol. 2. Fourier analysis, Academic Press, New York, 1975. · Zbl 0308.47002
[20] J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.