×

Existence and stability of solution for a nonlinear fractional differential equation. (English) Zbl 1462.34108

Summary: In this paper, we study a nonlinear \(\psi\)-Hilfer fractional integro-differential equation on finite interval \([a, b]\). Sufficient conditions for the existence of solution and stability for the initial value problem are obtained. Firstly, the existence of solution for the equation is proved by using Banach contraction mapping principle. Then the Ulam-Hyers-Rassias stability, Ulam-Hyers stability, Semi-Ulam-Hyers-Rassias stability of the system are discussed.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K30 Functional-differential equations in abstract spaces
34K27 Perturbations of functional-differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Abbas, S.; Mahto, L.; Favini, A., Dynamical study of fractional model of allelopathic stimulatory phytoplankton species, Differ. Equ. Dyn. Syst., 24, 267-280 (2016) · Zbl 1358.34049
[2] Alves, C. O., Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation, Appl. Math. Lett., 16 (2003) · Zbl 1041.37032
[3] Alves, C. O.; Nóbrega, A. B., Nodal ground state solution to a biharmonic equation via dual method, Differ. Equ., 260, 5174-5201 (2016) · Zbl 1343.35079
[4] Alves, C. O.; Nóbrega, A. B., Existence of multi-bump solutions for a class of elliptic problems involving the biharmonic operator, Monatshefte Math., 183, 35-60 (2017) · Zbl 1368.35085
[5] Alves, C. O.; Ercole, G.; Pereira, G. A., Asymptotic behaviour as \(p \to \infty\) of least energy solutions of a \((p, q(p))\)-Laplacian problem, Proc. R. Soc. Edinb., Sect. A, Math., 149, 1493-1522 (2019) · Zbl 1436.35200
[6] Apulensis, A. U.; Akkouchi, M., Hyers-Ulam-Rassias stability of nonlinear Volterra integral equations via a fixed point approach, Acta Univ. Apulensis, Mat.-Inform., 26, 257-266 (2013) · Zbl 1261.47094
[7] Balachandran, K.; Trujillo, J. J., The nonlocal Cauchy problem for nonlinear fractional integro differential equations in Banach spaces, Nonlinear Anal., 72, 4587-4593 (2010) · Zbl 1196.34007
[8] Cădariu, L.; Găvruţa, L.; Găvruţa, P., Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discrete Math., 6, 126-139 (2012) · Zbl 1289.39054
[9] Capelas de Oliveira, E.; Vanterler da C. Sousa, J., Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73, 111-126 (2018) · Zbl 1401.45011
[10] Castro, L. P.; Simões, A. M., Different types of Hyers-Ulam-Rassias stabilities for a class of integro-differential equations, Filomat, 31, 5379-5390 (2017) · Zbl 1499.45034
[11] Corlay, S.; Lebovits, J.; Jacques, L. V., Multifractional stochastic volatility models, Math. Finance, 24, 364-402 (2014) · Zbl 1295.91083
[12] Diaz, J. B.; Margolis, B., A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Am. Math. Soc., 74, 305-309 (1968) · Zbl 0157.29904
[13] Ge, F. D.; Kou, C. H., Stability analysis by Krasnoselskii’s fixed point theorem for nonlinear fractional differential equations, Appl. Math. Comput., 257, 308-316 (2015) · Zbl 1338.34103
[14] Huang, J. H.; Li, Y. J., Hyers-Ulam stability of delay differential equations of first order, Math. Nachr., 289, 60-66 (2016) · Zbl 1339.34082
[15] Jalilian, Y.; Jalilian, R., Existence of solution for delay fractional differential equations, Mediterr. J. Math., 10, 1731-1747 (2013) · Zbl 1283.34073
[16] Kaur, A.; Takhar, P. S.; Smith, D. M., Fractional differential equations based modeling of microbial survival and growth curves: model development and experimental validation, J. Food Sci., 73, 403-414 (2008)
[17] Khan, A.; Syam, M. I.; Zada, A., Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives, Eur. Phys. J. Plus, 133, 264-272 (2018)
[18] Kou, C. H.; Zhou, H. C.; Yan, Y., Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal., 74, 5975-5986 (2011) · Zbl 1235.34022
[19] Li, Y.; Chen, Y. Q.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59, 1810-1821 (2010) · Zbl 1189.34015
[20] Li, Q. F.; Chen, Y. P.; Huang, Y. Q., Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Appl. Numer. Math., 157, 38-54 (2020) · Zbl 1446.65115
[21] Matignon, D., Stability results for fractional differential equations with applications to control processing, (Computational Engineering in Systems Applications, vol. 2 (1996)), 963-968
[22] Mouffak, B.; Alberto, C.; Djamila, S., An existence result for nonlinear fractional differential equations on Banach spaces, Bound. Value Probl., 2009, 1-11 (2009) · Zbl 1181.34007
[23] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[24] Pu, Y. F.; Siarry, P.; Zhou, J. L., A fractional partial differential equation based multiscale denoising model for texture image, Math. Methods Appl. Sci., 37, 1784-1806 (2014) · Zbl 1301.35203
[25] Rassias, J. M.; Rassias, M. J.; Arunkumar, M., Ulam-Hyers stability of a 2-variable AC-mixed type functional equation in Felbin’s type spaces: fixed point method, Int. Math. Forum, 8, 1307-1322 (2013) · Zbl 1292.39015
[26] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers New York · Zbl 0818.26003
[27] Su, X. W., Solutions to boundary value problem of fractional order on unbounded domains in a Banach space, Nonlinear Anal., 74, 2844-2852 (2011) · Zbl 1250.34007
[28] Su, X. W.; Zhang, S. Q., Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl., 61, 1079-1087 (2011) · Zbl 1217.34045
[29] Vanterler da C. Sousa, J.; Capelas de Oliveira, E., On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60, 72-91 (2018) · Zbl 1470.26015
[30] Vanterler da C. Sousa, J.; Capelas de Oliveira, E., Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81, 50-56 (2018) · Zbl 1475.45020
[31] Vanterler da C. Sousa, J.; Capelas de Oliveira, E., On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator, J. Fixed Point Theory Appl., 20, 96-116 (2018) · Zbl 1398.34023
[32] Vivek, D.; Kanagarajan, K.; Elsayed, E. M., Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15, 15-35 (2018) · Zbl 1390.34029
[33] Wang, J. R.; Li, X. Z., A uniform method to Ulam-Hyers stability for some linear fractional equations, Mediterr. J. Math., 13, 625-635 (2016) · Zbl 1337.26020
[34] Wang, J. R.; Lin, Z., A class of impulsive nonautonomous differential equations and Ulam-Hyers-Rassias stability, Math. Methods Appl. Sci., 38, 868-880 (2015) · Zbl 1369.34072
[35] Wang, J. R.; Lv, L. L.; Zhou, Y., New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 2530-2538 (2012) · Zbl 1252.35276
[36] Wang, J. R.; Zhou, Y.; Fečkan, M., Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64, 3389-3405 (2012) · Zbl 1268.34033
[37] Zhan, R. T.; Li, Z. X.; Wang, L., A fractional differential constitutive model for dynamic stress intensity factors of an anti-plane crack in viscoelastic materials, Acta Mech. Sin., 30, 403-409 (2014) · Zbl 1346.74022
[38] Zhang, L. H.; Ahmad, B.; Wang, G. T., Nonlinear fractional integro-differential equations on unbounded domains in a Banach space, J. Comput. Appl. Math., 249, 51-56 (2013) · Zbl 1302.45019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.