×

On a class of Rauzy fractals without the finiteness property. (English) Zbl 1462.11026

Summary: We present some topological and arithmetical aspects of a class of Rauzy fractals \(\mathcal{R}_{a,b}\) related to the polynomials of the form \(P_{a,b}(x)=x^3-ax^2-bx-1\), where \(a\) and \(b\) are integers satisfying \(-a+1 \leq b \leq -2\). This class has the property that \(0\) lies on the boundary of \(\mathcal{R}_{a,b}\). We construct explicit finite automata that recognize the boundaries of these fractals. This allows to establish the number of neighbors of \(\mathcal{R}_{a,b}\) in the tiling it generates. Furthermore, we prove that if \(2a+3b+4 \leq 0\) then \(\mathcal{R}_{a,b}\) is not homeomorphic to a topological disk. We also show that the boundary of the set \(\mathcal{R}_{3,-2}\) is generated by two infinite iterated function systems.

MSC:

11B85 Automata sequences
28A80 Fractals
37B10 Symbolic dynamics
52C20 Tilings in \(2\) dimensions (aspects of discrete geometry)

References:

[1] S. Akiyama: Cubic Pisot units with finite beta expansions; in Algebraic Number Theory and Diophantine Analysis 2000, 11-26. · Zbl 1001.11038
[2] P. Arnoux, V. Berthé, H. Ei and S. Ito: Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions; in Discrete Math. Theor. Comput. Sci. AA 2001, 59-78. · Zbl 1017.68147
[3] P. Arnoux, V. Berthé and S. Ito: Discrete planes, \( \mathbb{Z}^2\)-actions, Jacobi-Perron algorithm and substitutions, Ann. Inst. Fourier (Grenoble) 52 (2002), 305-349. · Zbl 1017.11006
[4] P. Arnoux and S. Ito: Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207. · Zbl 1007.37001
[5] P. Arnoux, S. Ito and Y. Sano: Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math. 83 (2001), 183-206. · Zbl 0987.11013 · doi:10.1007/BF02790261
[6] P. Arnoux and G. Rauzy: Représentation géométrique des suites de complexité \(2n+1\), Bull. Soc. Math. France 119 (1991), 101-117. · Zbl 0789.28011 · doi:10.24033/bsmf.2164
[7] J. Bastos, A. Messaoudi, T. Rodrigues and D. Smania: A class of cubic Rauzy fractals, Theoret. Comput. Sci. 588 (2015), 114-130. · Zbl 1332.28012 · doi:10.1016/j.tcs.2015.04.007
[8] V. Berthé and A. Siegel: Purely periodic beta-expansions in the non-unit case, J. Number Theory 127 (2007), 153-172. · Zbl 1197.11139 · doi:10.1016/j.jnt.2007.07.005
[9] V. Canterini: Connectedness of geometric representation of substitutions of Pisot type, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 77-89. · Zbl 1031.37015
[10] V. Canterini and A. Siegel: Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001), 5121-5144. · Zbl 1142.37302
[11] N. Chekhova, P. Hubert and A. Messaoudi: Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, J. Théor. Nombres Bordeaux 13 (2001), 371-394. · Zbl 1038.37010
[12] C. Frougny: Number representation and finite automata; in Topics in Symbolic Dynamics and Applications, London Math. Soc. Lectures Note Ser. 279, 2000, 207-228. · Zbl 0976.11003
[13] C. Holton and L. Zamboni: Geometric realizations of substitutions, Bull. Soc. Math. France 126 (1998), 149-179. · Zbl 0931.11004
[14] P. Hubert and A. Messaoudi: Best simultaneous diophantine approximation of Pisot numbers and Rauzy fractals, Acta Arith. 124 (2006), 1-15. · Zbl 1116.28009 · doi:10.4064/aa124-1-1
[15] R. Kenyon and A. Vershik: Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 18 (1998), 357-372. · Zbl 0915.58077
[16] J.C. Lagarias, H.A. Porta and K.B. Stolarsky: Asymmetric tent map expansions. I. Eventually periodic points, J. London Math. Soc. 47 (1993), 542-556. · Zbl 0809.11041
[17] B. Loridant: Topological properties of a class of cubic Rauzy fractals, Osaka J. Math. 53 (2016), 161-219. · Zbl 1418.37031
[18] B. Loridant, A. Messaoudi, J. Thuswaldner and P. Surer: Tilings induced by a class of Rauzy fractals, Theoret. Comput. Sci. 477 (2013), 6-31. · Zbl 1271.37014
[19] A. Messaoudi: Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor. Nombres Bordeaux 10 (1998), 135-162. · Zbl 0918.11048
[20] A. Messaoudi: Frontière du fractal de Rauzy et système de numération complexe, Acta Arith. 95 (2000), 195-224. · Zbl 0968.28005
[21] A. Messaoudi: Propriétés arithmétiques et topologiques d’une classe d’ensembles fractales, Acta Arith. 121 (2006), 341-366. · Zbl 1104.28003 · doi:10.4064/aa121-4-5
[22] W. Parry: On the beta-expansion of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. · Zbl 0099.28103
[23] G.A. Pavani: Fractais de Rauzy, autômatos e fraçoes contínuas (Portuguese). Rauzy Fractals, Automata, and Continued Fractions, PhD Thesis, Saõ Paulo State University (2015), available at http://hdl.handle.net/11449/127805.
[24] B. Praggastis: Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc. 351 (1999), 3315-3349. · Zbl 0984.11008
[25] G. Rauzy: Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178. · Zbl 0522.10032
[26] A. Rényi: Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. · Zbl 0079.08901
[27] S. Ito and M. Kimura: On Rauzy fractal, Japan J. Indust. Appl. Math. 8 (1991), 461-486. · Zbl 0734.28010
[28] K. Schmidt: On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278. · Zbl 0494.10040
[29] A. Siegel and J. Thuswaldner: Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. 118 (2009), 144pp. · Zbl 1229.28021
[30] V. Sirvent and Y. Wang: Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 206 (2002), 465-485. · Zbl 1048.37015
[31] C.J. Smyth: There are only eleven Special Pisot numbers, Bull. London Math. Soc. 31 (1999), 1-5. · Zbl 0931.11042
[32] W. Thurston: Groups, tilings, and finite state automata, AMS Colloquium Lecture Notes 1 (1989).
[33] J.M. Thuswaldner: Unimodular Pisot substitutions and their associated tiles, J. Théor. Nombres Bordeaux 18 (2006), 487-536. · Zbl 1161.37016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.