×

Gončarov polynomials in partition lattices and exponential families. (English) Zbl 1462.05013

Summary: Classical Gončarov polynomials arose in numerical analysis as a basis for the solutions of the Gončarov interpolation problem. These polynomials provide a natural algebraic tool in the enumerative theory of parking functions. By replacing the differentiation operator with a delta operator and using the theory of finite operator calculus, R. Lorentz et al. [in: Connections in discrete mathematics. A celebration of the work of Ron Graham. Cambridge: Cambridge University Press. 56–85 (2018; Zbl 1400.41002)] introduced the sequence of generalized Gončarov polynomials associated to a pair \((\Delta, \mathcal{Z})\) of a delta operator \(\Delta\) and an interpolation grid \(\mathcal{Z} \). Generalized Gončarov polynomials share many nice algebraic properties and have a connection with the theories of binomial enumeration and order statistics. In this paper we give a complete combinatorial interpretation for any sequence of generalized Gončarov polynomials. First we show that they can be realized as weight enumerators in partition lattices. Then we give a more concrete realization in exponential families and show that these polynomials enumerate various enriched structures of vector parking functions.

MSC:

05A15 Exact enumeration problems, generating functions
05A10 Factorials, binomial coefficients, combinatorial functions
05A18 Partitions of sets
06A07 Combinatorics of partially ordered sets

Citations:

Zbl 1400.41002

Software:

OEIS

References:

[1] Frank, J. L.; Shaw, J. K., Abel-Goncarov polynomial expansions, J. Approx. Theory, 10, 1, 6-22 (1974) · Zbl 0272.30009
[2] Gončarov, V. L., Recherches sur les dérivées successives des fonctions analytiques. Etude des valeurs que les dérivées prennent dans une suite de domaines, Bull. Acad. Sci. Leningr., 73-104 (1930) · JFM 57.1426.02
[3] Gončarov, V. L., The Theory of Interpolation and Approximation of Functions (1954), Gostekhizdat: Gostekhizdat Moscow
[4] Haslinger, F., Abel-Goncarov polynomial expansions in spaces of holomorphic functions, J. Lond. Math. Soc. (2), 21, 3, 487-495 (1980) · Zbl 0434.46005
[5] Henle, M., Binomial enumeration on dissects, Trans. Am. Math. Soc., 202, 1-39 (1975) · Zbl 0303.05013
[6] Joni, S. A.; Rota, G.-C., Coalgebras and bialgebras in combinatorics, (Umbral Calculus and Hopf Algebras. Umbral Calculus and Hopf Algebras, Norman, Okla., 1978. Umbral Calculus and Hopf Algebras. Umbral Calculus and Hopf Algebras, Norman, Okla., 1978, Contemp. Math., vol. 6 (1982), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 1-47 · Zbl 0491.05021
[7] Konheim, A. G.; Weiss, B., An occupancy discipline and applications, SIAM J. Appl. Math., 14, 6, 1266-1274 (1966) · Zbl 0201.50204
[8] Kung, J. P.S., A probabilistic interpretation of the Gončarov and related polynomials, J. Math. Anal. Appl., 79, 349-351 (1981) · Zbl 0458.33015
[9] Kung, J. P.S.; Yan, C., Goncarov polynomials and parking functions, J. Comb. Theory, Ser. A, 102, 1, 16-37 (2003) · Zbl 1017.33003
[10] Levinson, N., The Gontcharoff polynomials, Duke Math. J., 11, 4, 729-733 (1944) · Zbl 0060.22403
[11] Lorentz, R.; Tringali, S.; Yan, C., Generalized Goncarov polynomials, (Butler, S.; etal., Connections in Discrete Mathematics: A Celebration of the Work of Ron Graham (2018), Cambridge University Press: Cambridge University Press Cambridge), 56-85 · Zbl 1400.41002
[12] Mullin, R.; Rota, G.-C., On the foundations of combinatorial theory. III. Theory of binomial enumeration, (Graph Theory and Its Applications. Graph Theory and Its Applications, Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1969 (1970), Academic Press: Academic Press New York), 167-213 · Zbl 0259.12001
[13] The On-Line Encyclopedia of Integer Sequences · Zbl 1044.11108
[14] Ray, N., Umbral calculus, binomial enumeration and chromatic polynomials, Trans. Am. Math. Soc., 309, 1, 191-213 (1988) · Zbl 0666.05008
[15] Rota, G.-C.; Kahaner, D.; Odlyzko, A., On the foundations of combinatorial theory. VII. Finite operator calculus, J. Math. Anal. Appl., 42, 3, 684-760 (1973) · Zbl 0267.05004
[16] Stanley, R. P., Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics, vol. 62 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0928.05001
[17] Whittaker, J. M., Interpolatory Function Theory, Cambridge Tracts in Math. and Math. Physics, vol. 33 (1935), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0012.15503
[18] Wilf, H. S., generatingfunctionology (2006), A K Peters, Ltd.: A K Peters, Ltd. Wellesley, MA · Zbl 1092.05001
[19] Yan, C., Parking functions, (Bóna, M., Handbook of Enumerative Combinatorics. Handbook of Enumerative Combinatorics, Discrete Math. Appl. (2015), CRC Press: CRC Press Boca Raton, FL), 835-893 · Zbl 1325.05022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.