×

Aggregated occupation measures and linear programming approach to constrained impulse control problems. (English) Zbl 1461.93225

Summary: For a constrained optimal impulse control problem of an abstract dynamical system, we introduce the occupation measures along with the aggregated occupation measures and present two associated linear programs. We prove that the two linear programs are equivalent under appropriate conditions, and each linear program gives rise to an optimal strategy in the original impulse control problem. In particular, we show the absence of the relaxation gap. By means of an example, we also present a detailed comparison of the occupation measures and linear programs introduced here with the related notions in the literature.

MSC:

93C27 Impulsive control/observation systems
49J10 Existence theories for free problems in two or more independent variables
90C05 Linear programming

References:

[1] Aliprantis, Ch.; Border, K. C., Infinite Dimensional Analysis (2006), Springer-Verlag: Springer-Verlag New York · Zbl 1156.46001
[2] Altman, E., Constrained Markov Decision Processes (1999), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton · Zbl 0963.90068
[3] Avrachenkov, K.; Habachi, O.; Piunovskiy, A.; Zhang, Y., Infinite horizon optimal impulsive control with applications to Internet congestion control, Int. J. Control, 88, 703-716 (2015) · Zbl 1319.49053
[4] Barles, G., Deterministic impulse control problems, SIAM J. Control Optim., 23, 419-432 (1985) · Zbl 0571.49020
[5] Bertsekas, D.; Shreve, S., Stochastic Optimal Control (1978), Academic Press: Academic Press New York · Zbl 0471.93002
[6] Blaquiêre, A., Impulsive optimal control with finite or infinite time horizon, J. Optim. Theory Appl., 46, 431-439 (1985) · Zbl 0549.49015
[7] Bogachev, V. I., Measure Theory (Volumes 1 and 2) (2007), Springer-Verlag: Springer-Verlag Berlin · Zbl 1120.28001
[8] Bremaud, P., Point Processes and Queues (1981), Springer-Verlag: Springer-Verlag New York · Zbl 0478.60004
[9] Brown, L.; Purves, R., Measurable selections of extrema, Ann. Stat., 1, 902-912 (1973) · Zbl 0265.28003
[10] Clayes, M.; Arzelier, D.; Henrion, D.; Lasserre, J-B., Measures and LMIs for impulsive nonlinear optimal control, IEEE Trans. Autom. Control, 59, 1374-1379 (2014) · Zbl 1360.93492
[11] Clayes, M.; Henrion, D.; Kružík, M., Semi-definite relaxations for optimal control problems with oscillation and concentration effects, ESAIM Control Optim. Calc. Var., 23, 95-117 (2017) · Zbl 1358.49026
[12] Costa, O.; Dufour, F., Continuous Average Control of Piecewise Deterministic Markov Processes, Springer Briefs in Mathematics (2013) · Zbl 1272.93002
[13] Davis, M. H.A., Markov Models and Optimization (1993), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton · Zbl 0780.60002
[14] Dufour, F.; Horiguchi, M.; Piunovskiy, A., The expected total cost criterion for Markov decision processes under constraints: a convex analytic approach, Adv. Appl. Probab., 44, 774-793 (2012) · Zbl 1286.90161
[15] Dufour, F.; Horiguchi, M.; Piunovskiy, A., Optimal impulsive control of piecewise deterministic Markov processes, Stochastics, 88, 1073-1098 (2016) · Zbl 1356.90158
[16] Ethier, S.; Kurtz, T., Markov Processes (1986), Wiley: Wiley New York · Zbl 0592.60049
[17] Gaitsgory, V.; Quincampoix, M., Linear programming approach to deterministic infinite horizon optimal control problems with discounting, SIAM J. Control Optim., 48, 2480-2512 (2009) · Zbl 1201.49040
[18] Henrion, D.; Kružík, M.; Weisser, T., Optimal control problems with oscillations, concentrations and discontinuities, Automatica, 103, 159-165 (2019) · Zbl 1412.49073
[19] Hernández-Hernández, D.; Hernández-Lerma, O.; Taksar, M., The linear programming approach to deterministic optimal control problems, Appl. Math., 24, 17-33 (1996) · Zbl 0871.49005
[20] Hernández-Lerma, O.; Lasserre, J., Discrete-Time Markov Control Processes (1996), Springer-Verlag: Springer-Verlag New York
[21] Hernández-Lerma, O.; Lasserre, J. B., Further Topics on Discrete-Time Markov Control Processes (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0928.93002
[22] Himmelberg, C.; Parthasarathy, T.; Van Vleck, F., Optimal plans for dynamic programming problems, Math. Oper. Res., 1, 390-394 (1976) · Zbl 0368.90134
[23] Hou, S. H.; Wong, K. H., Optimal impulsive control problem with application to human immunodeficiency virus treatment, J. Optim. Theory Appl., 151, 385-401 (2011) · Zbl 1251.49044
[24] Lasserre, J.; Henrion, D.; Prieur, C.; Trêlat, E., Nonlinear optimal control via occupation measures and LMI-relaxations, SIAM J. Control Optim., 47, 1643-1666 (2008) · Zbl 1188.90193
[25] Leander, R.; Lenhart, S.; Protopopescu, V., Optimal control of continuous systems with impulse controls, Optim. Control Appl. Methods, 36, 535-549 (2015) · Zbl 1329.49063
[26] Liu, Y.; Teo, K.; Jennings, L.; Wang, S., On a class of optimal control problems with state jumps, J. Optim. Theory Appl., 98, 65-82 (1998) · Zbl 0908.49023
[27] Miller, B.; Rubinovich, E., Impulsive Control in Continuous and Discrete-Continuous Systems (2003), Springer: Springer New York · Zbl 1065.49022
[28] Piunovskiy, A., Optimal Control of Random Sequences in Problems with Constraints (1997), Kluwer: Kluwer Dordrecht · Zbl 0894.93001
[29] Piunovskiy, A.; Plakhov, A.; Torres, D.; Zhang, Y., Optimal impulse control of dynamical systems, SIAM J. Control Optim., 57, 2720-2752 (2019) · Zbl 1420.49038
[30] Piunovskiy, A.; Zhang, Y., Linear programming approach to optimal impulse control problems with functional constraints, J. Math. Anal. Appl., 496, 2, Article 124817 pp. (2021) · Zbl 1458.49029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.