×

Prescribed performance fixed-time tracking control for a class of second-order nonlinear systems with disturbances and actuator saturation. (English) Zbl 1461.93087

A second order nonlinear control system is considered. The model contains disturbance and input saturation. A sliding surface is proposed, and, under suitable assumptions on the uncertainty, fixed time tracking and stability properties are obtained. An example is presented.

MSC:

93B12 Variable structure systems
93C10 Nonlinear systems in control theory
93D40 Finite-time stability
Full Text: DOI

References:

[1] Bechlioulis, C. P.; Doulgeri, Z.; Rovithakis, G. A., Neuro-adaptive force/position control with prescribed performance and guaranteed contact maintenance, IEEE Transactions on Neural Networks, 21, 12, 1857-1868 (2010)
[2] Bechlioulis, C. P.; Doulgeri, Z.; Rovithakis, G. A., Guaranteeing prescribed performance and contact maintenance via an approximation free robot force/position controller, Automatica, 48, 2, 360-365 (2012) · Zbl 1364.93508
[3] Bechlioulis, C. P.; Rovithakis, G. A., Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance, IEEE Transactions on Automatic Control, 53, 9, 2090-2099 (2008) · Zbl 1367.93298
[4] Bechlioulis, C. P.; Rovithakis, G. A., Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems, Automatica, 45, 2, 532-538 (2009) · Zbl 1158.93325
[5] Bechlioulis, C. P.; Rovithakis, G. A., A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems, Automatica, 50, 4, 1217-1226 (2014) · Zbl 1298.93171
[6] Bu, X.; Wu, X.; Huang, J.; Wei, D., A guaranteed transient performance-based adaptive neural control scheme with low-complexity computation for flexible air-breathing hypersonic vehicles, Nonlinear Dynamics, 84, 4, 2175-2194 (2016) · Zbl 1355.93126
[7] Chen, M.; Wu, Q. X.; Jiang, C. S.; Jiang, B., Guaranteed transient performance based control with input saturation for near space vehicles, Science China Information Sciences, 57, 5, 1-12 (2014) · Zbl 1331.93045
[8] Farrell, J.; Sharma, M.; Polycarpou, M., Backstepping-based flight control with adaptive function approximation, Jounral of Guidance, Control and Dynamics, 28, 6, 1089-1102 (2005)
[9] Han, S. I.; Lee, J. M., Improved prescribed performance constraint control for a strict feedback non-linear dynamic system, IET Control Theory & Applications, 7, 14, 1818-1827 (2013)
[10] Han, S. I.; Lee, J. M., Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system, IEEE Transactions on Industrial Electronics, 61, 2, 1099-1112 (2013)
[11] Hu, Q., Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis stabilized flexible spacecraft with actuator saturation limits, Nonliear Dynamics, 55, 301-321 (2009) · Zbl 1170.74338
[12] Jiang, B.; Hu, Q.; Friswell, M. I., Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness, IEEE Transactions on Aerospace and Electronic Systems, 52, 4, 1576-1586 (2016)
[13] Jiang, B.; Hu, Q.; Friswell, M. I., Fixed-time attitude control for rigid spacecraft with actuator saturation and faults, IEEE Transactions on Control Systems Technology, 24, 5, 1892-1898 (2016)
[14] Jiang, C.; Teo, K. L.; Xu, H.; Caccetta, L.; Duan, G. R., Adaptive Jacobian force/position tracking for space free-flying robots with prescribed transient performance, Robotics and Autonomous Systems, 72, 235-247 (2015)
[15] Kostarigka, A. K.; Doulgeri, Z.; Rovithakis, G. A., Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity, Automatica, 49, 5, 1137-1147 (2013) · Zbl 1319.93054
[16] Kostarigka, A. K.; Rovithakis, G. A., Prescribed performance output feedback/observer-free robust adaptive control of uncertain systems using neural networks, IEEE Transactions on Systems, Man, and Cybernetics Part B( Cybernetics), 41, 6, 1483-1494 (2011)
[17] Lee, T., Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers, System Control Letters, 61, 1, 231-237 (2012) · Zbl 1256.93088
[18] Liu, Y.; Liu, H.; Sun, X., A variable structure MRAC with expected transient and steady-state performance, Automatica, 42, 5, 805-813 (2016) · Zbl 1137.93015
[19] Lu, K.; Xia, Y., Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm, IET Control Theory & Applications, 8, 15, 1465-1477 (2013)
[20] Man, Z.; Paplinski, A. P.; Wu, H. R., A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators, IEEE Transactions on Automatic Control, 39, 12, 2464-2469 (1994) · Zbl 0825.93551
[21] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transaction on Automatic Control, 57, 8, 2106-2110 (2012) · Zbl 1369.93128
[22] Sun, W.; Gao, H.; Kaynak, O., Vibration isolation for active suspensions with performance constraints and actuator saturation, IEEE/ASME Transactions on Mechatronics, 20, 2, 675-683 (2015)
[23] Sun, W.; Zhao, Z.; Gao, H., Saturated adaptive robust control for active suspension systems, IEEE Transactions on Industrial Electronics, 60, 9, 3889-3896 (2013)
[24] Wang, L.; Chai, T.; Zhai, L., Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics, IEEE Transactions on Industrial Electronics, 56, 9, 3296-3304 (2009) · Zbl 1221.35349
[25] Wang, W.; Wen, W., Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance, Automatica, 46, 12, 2082-2091 (2010) · Zbl 1205.93083
[26] Wen, C.; Zhou, J.; Liu, Z.; Su, H., Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance, IEEE Transactions on Automatic Control, 56, 7, 1672-1678 (2011) · Zbl 1368.93317
[27] Xiao, B.; Dong, Q.; Ye, D.; Liu, L.; Huo, X., A general tracking control framework for uncertain systems with exponential convergence performance, IEEE/ASME Transactions on Mechatronics, 23, 1, 111-120 (2018)
[28] Xiao, B.; Shen, Y.; Wu, L., A structure simple controller for satellite attitude tracking maneuver, IEEE Transactions on Industrial Electronics, 64, 2, 1436-1446 (2016)
[29] Xiao, B.; Yin, S., Velocity-free fault-tolerant and uncertainty attenuation control for a class of nonlinear systems, IEEE Transactions on Industrial Electronics, 63, 7, 4400-4411 (2016)
[30] Xiao, B.; Yin, S., A new disturbance attenuation control scheme for quadrotor unmanned aerial vehicles, IEEE Transactions on Industrial Informatics, 13, 6, 2922-2932 (2017)
[31] Xiao, B.; Yin, S.; Gao, H., Reconfigurable tolerant control of uncertain mechanical systems with actuator faults: A sliding mode observer-based approach, IEEE Transactions on Control System Technology, 26, 4, 1249-1258 (2018)
[32] Xiao, B.; Yin, S.; Kaynak, O., Tracking control of robotic manipulators with uncertain kinematics and dynamics, IEEE Transactions on Industrial Electronics, 63, 10, 6439-6449 (2016)
[33] Xu, B.; Wang, S.; Gao, G.; Zhang, Y.; Shi, Z., Command filter based robust nonlinear control of hypersonic aircraft with magnitude constraints on states and actuators, Journal of Intelligent & Robotic Systems, 73, 1, 233-247 (2014)
[34] Zhou, Z. G.; Zhang, Y. A.; Shi, X. N.; Zhou, D., Robust attitude tracking for rigid spacecraft with prescribed transient performance, International Journal of Control, 90, 11, 2471-2479 (2017) · Zbl 1380.93100
[35] Zhu, Z.; Xia, Y.; Fu, M., Attitude stabilization of rigid spacecraft with finite-time convergence, International Journal of Robust and Nonlinear Control, 21, 6, 686-702 (2011) · Zbl 1214.93100
[36] Zuo, Z.; Tie, L., Distributed robust finite-time nonlinear consensus protocols for multi-agent systems, International Journal of Systems Science, 47, 6, 1366-1375 (2016) · Zbl 1333.93027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.