×

Truss structure optimization with subset simulation and augmented Lagrangian multiplier method. (English) Zbl 1461.74063

Summary: This paper presents a global optimization method for structural design optimization, which integrates subset simulation optimization (SSO) and the dynamic augmented Lagrangian multiplier method (DALMM). The proposed method formulates the structural design optimization as a series of unconstrained optimization sub-problems using DALMM and makes use of SSO to find the global optimum. The combined strategy guarantees that the proposed method can automatically detect active constraints and provide global optimal solutions with finite penalty parameters. The accuracy and robustness of the proposed method are demonstrated by four classical truss sizing problems. The results are compared with those reported in the literature, and show a remarkable statistical performance based on 30 independent runs.

MSC:

74P05 Compliance or weight optimization in solid mechanics
90C90 Applications of mathematical programming

References:

[1] Haftka, R.; Gurdal, Z.; ; Elements of Structural Optimization: Dordrecht, The Netherlands 1992; . · Zbl 0782.73004
[2] Jones, D.R.; Perttunen, C.D.; Stuckman, B.E.; Lipschitzian optimization without the Lipschitz constant; J. Opt. Theory Appl.: 1993; Volume 79 ,157-181. · Zbl 0796.49032
[3] Mockus, J.; Paulavičius, R.; Rusakevičius, D.; Šešok, D.; Žilinskas, J.; Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization; J. Glob. Opt.: 2017; Volume 67 ,425-450. · Zbl 1359.90131
[4] Kvasov, D.E.; Sergeyev, Y.D.; Deterministic approaches for solving practical black-box global optimization problems; Adv. Eng. Softw.: 2015; Volume 80 ,58-66.
[5] Kvasov, D.E.; Mukhametzhanov, M.S.; Metaheuristic vs. deterministic global optimization algorithms: The univariate case; Appl. Math. Comput.: 2018; Volume 318 ,245-259. · Zbl 1426.90208
[6] Adeli, H.; Kumar, S.; Distributed genetic algorithm for structural optimization; J. Aerosp. Eng.: 1995; Volume 8 ,156-163.
[7] Kameshki, E.S.; Saka, M.P.; Optimum geometry design of nonlinear braced domes using genetic algorithm; Comput. Struct.: 2007; Volume 85 ,71-79.
[8] Rajeev, S.; Krishnamoorthy, C.S.; Discrete optimization of structures using genetic algorithms; J. Struct. Eng.: 1992; Volume 118 ,1233-1250.
[9] Wu, S.J.; Chow, P.T.; Steady-state genetic algorithms for discrete optimization of trusses; Comput. Struct.: 1995; Volume 56 ,979-991. · Zbl 0900.73943
[10] Saka, M.P.; Optimum design of pitched roof steel frames with haunched rafters by genetic algorithm; Comput. Struct.: 2003; Volume 81 ,1967-1978.
[11] Erbatur, F.; Hasançebi, O.; Tütüncü, İ.; Kılıç, H.; Optimal design of planar and space structures with genetic algorithms; Comput. Struct.: 2000; Volume 75 ,209-224.
[12] Galante, M.; Structures optimization by a simple genetic algorithm; Numerical Methods in Engineering and Applied Sciences: Barcelona, Spain 1992; ,862-870.
[13] Bennage, W.A.; Dhingra, A.K.; Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing; Int. J. Numer. Methods Eng.: 1995; Volume 38 ,2753-2773. · Zbl 0855.73052
[14] Lamberti, L.; An efficient simulated annealing algorithm for design optimization of truss structures; Comput. Struct.: 2008; Volume 86 ,1936-1953.
[15] Leite, J.P.B.; Topping, B.H.V.; Parallel simulated annealing for structural optimization; Comput. Struct.: 1999; Volume 73 ,545-564. · Zbl 1049.74748
[16] Camp, C.V.; Bichon, B.J.; Design of Space Trusses Using Ant Colony Optimization; J. Struct. Eng.: 2004; Volume 130 ,741-751.
[17] Kaveh, A.; Talatahari, S.; A particle swarm ant colony optimization for truss structures with discrete variables; J. Constr. Steel Res.: 2009; Volume 65 ,1558-1568.
[18] Kaveh, A.; Shojaee, S.; Optimal design of skeletal structures using ant colony optimisation; Int. J. Numer. Methods Eng.: 2007; Volume 70 ,563-581. · Zbl 1194.74248
[19] Kaveh, A.; Farahmand Azar, B.; Talatahari, S.; Ant colony optimization for design of space trusses; Int. J. Space Struct.: 2008; Volume 23 ,167-181.
[20] Li, L.J.; Huang, Z.B.; Liu, F.; A heuristic particle swarm optimization method for truss structures with discrete variables; Comput. Struct.: 2009; Volume 87 ,435-443.
[21] Li, L.J.; Huang, Z.B.; Liu, F.; Wu, Q.H.; A heuristic particle swarm optimizer for optimization of pin connected structures; Comput. Struct.: 2007; Volume 85 ,340-349.
[22] Luh, G.C.; Lin, C.Y.; Optimal design of truss-structures using particle swarm optimization; Comput. Struct.: 2011; Volume 89 ,2221-2232.
[23] Perez, R.E.; Behdinan, K.; Particle swarm approach for structural design optimization; Comput. Struct.: 2007; Volume 85 ,1579-1588.
[24] Dong, Y.; Tang, J.; Xu, B.; Wang, D.; An application of swarm optimization to nonlinear programming; Comput. Math. Appl.: 2005; Volume 49 ,1655-1668. · Zbl 1127.90407
[25] Jansen, P.W.; Perez, R.E.; Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach; Comput. Struct.: 2011; Volume 89 ,1352-1366.
[26] Sedlaczek, K.; Eberhard, P.; Using augmented Lagrangian particle swarm optimization for constrained problems in engineering; Struct. Multidiscip. Opt.: 2006; Volume 32 ,277-286.
[27] Talatahari, S.; Kheirollahi, M.; Farahmandpour, C.; Gandomi, A.H.; A multi-stage particle swarm for optimum design of truss structures; Neural Comput. Appl.: 2013; Volume 23 ,1297-1309.
[28] Lee, K.S.; Geem, Z.W.; A new structural optimization method based on the harmony search algorithm; Comput. Struct.: 2004; Volume 82 ,781-798.
[29] Lee, K.S.; Geem, Z.W.; Lee, S.H.; Bae, K.W.; The harmony search heuristic algorithm for discrete structural optimization; Eng. Opt.: 2005; Volume 37 ,663-684.
[30] Saka, M.; Optimum geometry design of geodesic domes using harmony search algorithm; Adv. Struct. Eng.: 2007; Volume 10 ,595-606.
[31] Degertekin, S.O.; Improved harmony search algorithms for sizing optimization of truss structures; Comput. Struct.: 2012; Volume 92 ,229-241.
[32] Kaveh, A.; Talatahari, S.; Optimal design of skeletal structures via the charged system search algorithm; Struct. Multidiscip. Opt.: 2010; Volume 41 ,893-911.
[33] Kaveh, A.; Talatahari, S.; Size optimization of space trusses using Big Bang-Big Crunch algorithm; Comput. Struct.: 2009; Volume 87 ,1129-1140.
[34] Degertekin, S.O.; Hayalioglu, M.S.; Sizing truss structures using teaching-learning-based optimization; Comput. Struct.: 2013; Volume 119 ,177-188.
[35] Camp, C.V.; Farshchin, M.; Design of space trusses using modified teaching-learning based optimization; Eng. Struct.: 2014; Volume 62 ,87-97.
[36] Sonmez, M.; Artificial Bee Colony algorithm for optimization of truss structures; Appl. Soft Comput.: 2011; Volume 11 ,2406-2418.
[37] Jalili, S.; Hosseinzadeh, Y.; A Cultural Algorithm for Optimal Design of Truss Structures; Latin Am. J. Solids Struct.: 2015; Volume 12 ,1721-1747.
[38] Bekdaş, G.; Nigdeli, S.M.; Yang, X.-S.; Sizing optimization of truss structures using flower pollination algorithm; Appl. Soft Comput.: 2015; Volume 37 ,322-331.
[39] Kaveh, A.; Bakhshpoori, T.; A new metaheuristic for continuous structural optimization: Water evaporation optimization; Struct. Multidiscip. Opt.: 2016; Volume 54 ,23-43.
[40] Kaveh, A.; Talatahari, S.; Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures; Comput. Struct.: 2009; Volume 87 ,267-283.
[41] Kaveh, A.; Bakhshpoori, T.; Afshari, E.; An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm; Comput. Struct.: 2014; Volume 143 ,40-59.
[42] Lamberti, L.; Pappalettere, C.; Metaheuristic Design Optimization of Skeletal Structures: A Review; Comput. Technol. Rev.: 2011; Volume 4 ,1-32.
[43] Bertsekas, D.P.; ; Constrained Optimization and Lagrange Multiplier Methods: Belmont, TN, USA 1996; . · Zbl 0572.90067
[44] Li, H.S.; Subset simulation for unconstrained global optimization; Appl. Math. Model.: 2011; Volume 35 ,5108-5120. · Zbl 1228.90082
[45] Li, H.S.; Au, S.K.; Design optimization using Subset Simulation algorithm; Struct. Saf.: 2010; Volume 32 ,384-392.
[46] Li, H.S.; Ma, Y.Z.; Discrete optimum design for truss structures by subset simulation algorithm; J. Aerosp. Eng.: 2015; Volume 28 ,04014091.
[47] Au, S.K.; Ching, J.; Beck, J.L.; Application of subset simulation methods to reliability benchmark problems; Struct. Saf.: 2007; Volume 29 ,183-193.
[48] Au, S.K.; Beck, J.L.; Estimation of small failure probabilities in high dimensions by subset simulation; Probab. Eng. Mech.: 2001; Volume 16 ,263-277.
[49] Coello, C.A.C.; Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art; Comput. Methods Appl. Mech. Eng.: 2002; Volume 191 ,1245-1287. · Zbl 1026.74056
[50] Long, W.; Liang, X.; Huang, Y.; Chen, Y.; A hybrid differential evolution augmented Lagrangian method for constrained numerical and engineering optimization; Comput.-Aided Des.: 2013; Volume 45 ,1562-1574.
[51] Au, S.K.; Reliability-based design sensitivity by efficient simulation; Comput. Struct.: 2005; Volume 83 ,1048-1061.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.