×

A generalized Newton iteration for computing the solution of the inverse Henderson problem. (English) Zbl 1461.65109

Summary: We develop a generalized Newton scheme called IHNC (inverse hypernetted-chain iteration) for the construction of effective pair potentials for systems of interacting point-like particles. The construction is realized in such a way that the distribution of the particles matches a given radial distribution function. The IHNC iteration uses the hypernetted-chain integral equation for an approximate evaluation of the inverse of the Jacobian of the forward operator.
In contrast to the full Newton method realized in the Inverse Monte Carlo (IMC) scheme, the IHNC algorithm requires only a single molecular dynamics computation of the radial distribution function per iteration step and no further expensive cross-correlations. Numerical experiments are shown to demonstrate that the method is as efficient as the IMC scheme, and that it easily allows to incorporate thermodynamical constraints.

MSC:

65J22 Numerical solution to inverse problems in abstract spaces
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics

Software:

Gromacs; MagiC

References:

[1] Potestio R, Peter C, Kremer K. Computer simulations of soft matter: linking the scales. Entropy. 2014;16:4199-4245. doi: 10.3390/e16084199 · doi:10.3390/e16084199
[2] Henderson RL. A uniqueness theorem for fluid pair correlation functions. Phys Lett A. 1974;49:197-198. doi: 10.1016/0375-9601(74)90847-0 · doi:10.1016/0375-9601(74)90847-0
[3] Ben-Naim A. Molecular theory of solutions. New York: Oxford University Press; 2006. · Zbl 1134.80001
[4] Hansen J-P, McDonald IR. Theory of simple liquids. 4th ed. Oxford: Academic Press; 2013. · Zbl 1277.00030
[5] Mirzoev A, Lyubartsev AP. MagiC: software package for multiscale modeling. J Chem Theory Comput. 2013;9:1512-1520. doi: 10.1021/ct301019v · doi:10.1021/ct301019v
[6] Rühle V, Junghans C, Lukyanov A, et al. Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput. 2009;5:3211-3223. doi: 10.1021/ct900369w · doi:10.1021/ct900369w
[7] Tóth G. Interactions from diffraction data: historical and comprehensive overview of simulation assisted methods. J Phys Condens Matter. 2007;19:335220. · doi:10.1088/0953-8984/19/33/335220
[8] Jörgens K. Linear integral operators. Boston: Pitman; 1982. · Zbl 0499.47029
[9] Ruelle D. Statistical mechanics: rigorous results. New York: W.A. Benjamin Publ.; 1969. · Zbl 0177.57301
[10] Hanke M. Fréchet differentiability of molecular distribution functions I. ##img## ##img####img##\(L^{\operatorname{\infty}}\) analysis. Lett Math Phys. 2018;108:285-306. doi: 10.1007/s11005-017-1009-0 · Zbl 1383.82010 · doi:10.1007/s11005-017-1009-0
[11] Hanke M. Well-posedness of the iterative Boltzmann inversion. J Stat Phys. 2018;170:536-553. doi: 10.1007/s10955-017-1944-2 · Zbl 1390.82022 · doi:10.1007/s10955-017-1944-2
[12] Schommers W. A pair potential for liquid rubidium from the pair correlation function. Phys Lett. 1973;43A:157-158. doi: 10.1016/0375-9601(73)90591-4 · doi:10.1016/0375-9601(73)90591-4
[13] Soper AK. Empirical potential Monte Carlo simulation of fluid structure. Chem Phys. 1996;202:295-306. doi: 10.1016/0301-0104(95)00357-6 · doi:10.1016/0301-0104(95)00357-6
[14] Lyubartsev AP, Laaksonen A. Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E. 1995;52:3730-3737. doi: 10.1103/PhysRevE.52.3730 · doi:10.1103/PhysRevE.52.3730
[15] Murtola T, Falck E, Karttunen M, et al. Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints. J Chem Phys. 2007;126:075101. · doi:10.1063/1.2646614
[16] Ivanizki D. Numerical analysis of the relation between interactions and structure in a molecular fluid. PhD Thesis. Johannes Gutenberg-Universität Mainz; 2015.
[17] Levesque D, Weis JJ, Reatto L. Pair interaction from structural data for dense classical liquids. Phys Rev Lett. 1985;54:451-454. doi: 10.1103/PhysRevLett.54.451 · doi:10.1103/PhysRevLett.54.451
[18] Heinen M. Calculating particle pair potentials from fluid-state pair correlations: iterative Ornstein-Zernike inversion. J Comput Chem. 2018;39:1531-1543. doi: 10.1002/jcc.25225 · doi:10.1002/jcc.25225
[19] Henrici P. Applied and computational complex analysis. Vol. 3. New York: John Wiley & Sons; 1986. · Zbl 0578.30001
[20] Abraham MJ, van der Spoel D, Lindahl E, et al. the Gromacs development team. Gromacs User Manual version 2016.3, www.gromacs.org (2017).
[21] Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435-447. doi: 10.1021/ct700301q · doi:10.1021/ct700301q
[22] Lyubartsev A, Mirzoev A, Chen L, et al Systematic coarse-graining of molecular models by the Newton inversion method. Faraday Discuss. 2010;144:43-56. doi: 10.1039/B901511F · doi:10.1039/B901511F
[23] Fu CC, Kulkarni PM, Shell MS, et al. A test of systematic coarse-graining of molecular dynamics simulations: thermodynamic properties. J Chem Phys. 2012;137:164106. · doi:10.1063/1.4759463
[24] Jain S, Garde S, Kumar SK. Do inverse Monte Carlo algorithms yield thermodynamically consistent interaction potentials? Ind Eng Chem Res. 2006;45:5614-5618. doi: 10.1021/ie060042h · doi:10.1021/ie060042h
[25] Reith D, Pütz M, Müller-Plathe F. Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem. 2003;24:1624-1636. doi: 10.1002/jcc.10307 · doi:10.1002/jcc.10307
[26] Wang H, Junghans C, Kremer K. Comparative atomistic and coarse-grained study of water: what do we lose by coarse-graining? Eur Phys J E. 2009;28:221-229. doi: 10.1140/epje/i2008-10413-5 · doi:10.1140/epje/i2008-10413-5
[27] Björck Å. Numerical methods for least squares problems. Philadelphia: SIAM; 1996. · Zbl 0847.65023 · doi:10.1137/1.9781611971484
[28] Smit B. Phase diagrams of Lennard-Jones fluids. J Chem Phys. 1992;96:8639-8640. doi: 10.1063/1.462271 · doi:10.1063/1.462271
[29] Hansen J-P, Verlet L. Phase transitions of the Lennard-Jones system. Phys Rev. 1969;184:151-161. doi: 10.1103/PhysRev.184.151 · doi:10.1103/PhysRev.184.151
[30] Schmidt PW, Tompson CW. X-ray scattering studies of simple fluids. In: Frisch HL and Salsburg ZW, editors. Simple Dense Fluids, New York: Academic Press; 1968. p. 31-110. · doi:10.1016/B978-0-12-395698-9.50009-1
[31] Tuckerman ME. Statistical mechanics: theory and molecular simulation. Oxford: Oxford University Press; 2010. · Zbl 1232.82002
[32] Mikolaj PG, Pings CJ. Structure of liquids. III. An X-ray diffraction study of fluid argon. J Chem Phys. 1967;46:1401-1411. doi: 10.1063/1.1840864 · doi:10.1063/1.1840864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.