×

Kernel density estimation on symmetric spaces of non-compact type. (English) Zbl 1461.62245

Summary: We construct a kernel density estimator on symmetric spaces of non-compact type and establish an upper bound for its convergence rate, analogous to the minimax rate for classical kernel density estimators on Euclidean space. Symmetric spaces of non-compact type include hyperboloids of constant curvature \(- 1\) and spaces of symmetric positive definite matrices. This paper obtains a simplified formula in the special case when the symmetric space is the space of normal distributions, a 2-dimensional hyperboloid.

MSC:

62R40 Topological data analysis
62G07 Density estimation
43-04 Software, source code, etc. for problems pertaining to abstract harmonic analysis
Full Text: DOI

References:

[1] Asta, D. M.; Shalizi, C. R.; Meila, M.; Heskes, T., Geometric network comparisons, Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands, 102-110 (2015), http://auai.org/uai2015/proceedings/papers/249.pdf
[2] Chevallier, E.; Forget, T.; Barbaresco, F.; Angulo, J., Kernel density estimation on the Siegel space with an application to radar processing, Entropy, 18, 11, 347-364 (2016), https://www.mdpi.com/1099-4300/18/11/396
[3] Chevallier, E.; Kalunga, E.; Angulo, J., Kernel density estimation on spaces of Gaussian distributions and symmetric positive definite matrices, SIAM J. Imaging Sci., 10, 1, 191-215 (2017), 3606419 · Zbl 1422.62136
[4] Helgason, S., Harish-Chandra’s \(c\)-function. A mathematical jewel, Noncompact Lie Groups and Some of their Applications (San Antonio, TX, 1993). Noncompact Lie Groups and Some of their Applications (San Antonio, TX, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 429, 55-67 (1994), 1306516 · Zbl 0839.43016
[5] Hendriks, H., Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansions, Ann. Statist., 18, 2, 832-849 (1990), 1056339 · Zbl 0711.62036
[6] Huckemann, S. F.; Kim, P. T.; Koo, J.-Y.; Munk, A., Möbius deconvolution on the hyperbolic plane with application to impedance density estimation, Ann. Statist., 38, 4, 2465-2498 (2010), 2676895 · Zbl 1203.62055
[7] Kim, Y. T.; Park, H. S., Geometric structures arising from kernel density estimation on Riemannian manifolds, J. Multivariate Anal., 114, 112-126 (2013), 2993877 · Zbl 1255.62104
[8] Krioukov, D.; Papadopoulos, F.; Kitsak, M.; Vahdat, A.; Boguñá, M., Hyperbolic geometry of complex networks, Phys. Rev. E (3), 82, 3, 036106, 18 (2010), 2787998
[9] Loos, O., Symmetric Spaces. I: General Theory, viii+198 (1969), W. A. Benjamin, Inc., New York-Amsterdam, 0239005 · Zbl 0175.48601
[10] Narayanan, E. K.; Ray, S. K., The heat kernel and hardy’s theorem on symmetric spaces of noncompact type, Proc. Indian Acad. Sci. Math. Sci., 112, 2, 321-330 (2002), 1908373 · Zbl 1007.43006
[11] Pelletier, B., Kernel density estimation on Riemannian manifolds, Statist. Probab. Lett., 73, 3, 297-304 (2005), 2179289 · Zbl 1065.62063
[12] Pesenson, I., A discrete helgason-fourier transform for sobolev and besov functions on noncompact symmetric spaces, Radon Transforms, Geometry, and Wavelets, vol. 464. Radon Transforms, Geometry, and Wavelets, vol. 464, Contemp. Math., 231-247 (2008), 2440139 · Zbl 1256.43004
[13] Rahman, I. U.; Drori, I.; Stodden, V. C.; Donoho, D. L.; Schröder, P., Multiscale representations for manifold-valued data, Multiscale Model. Simul., 4, 4, 1201-1232 (2005), 2203850 · Zbl 1236.65166
[14] Terras, A., Harmonic analysis on symmetric spaces—Euclidean space, the sphere, and the Poincaré upper half-plane, xviii+413 (2013), Springer, New York, 3100414 · Zbl 1279.43001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.