×

Finite-to-one zero-dimensional covers of dynamical systems. (English) Zbl 1461.37016

This paper concerns a version of the Hurewicz theorem in the framework of dynamical systems: if \(f: X\to Y\) is a closed map between separable metric spaces and there exists \(k\geq 0\) such that \(\dim f^{-1}(y) \leq k\) for each \(y\in Y\), then \(\dim X \leq \dim Y + k\).
The authors consider the following problem: what kind of dynamical systems \((X, f)\) can be covered by zero-dimensional dynamical systems via finite-to-one maps? For what kind of dynamical systems \((X, f)\), does there exist a dynamical system \((Z, \tilde{f})\) with a zero-dimensional compactum \(Z\) and a finite-to-one onto map \(p: Z\to X\) such that \(p \tilde{f} = f p\)?
This paper gives a partial answer to this problem, generalizing J. Kulesza’s result [Ergodic Theory Dyn. Syst. Journal Profile 15, No. 5, 939–950 (1995; Zbl 0882.54034)] (see an improved version in [Y. Ikegami et al., Topology Appl. 160, No. 3, 564–574 (2013; Zbl 1295.54036)]).
The main theorem states: let \(f: X\to X\) be a map on an \(n\)-dimensional compactum \(X\) such that \(f\) is zero-dimensional preserving (i.e., for any zero-dimensional closed \(D\subset X\), \(\dim f(D) \leq 0\)), the set \(\{x\in X| \dim f^{-1}(x) \leq 0\}\) is zero-dimensional and the set \(EP(f)\) of eventually periodic points is zero-dimensional. Then there exists a dense \(G_{\delta}\)-set \(H\) of \(X\) and a zero-dimensional cover \((Z,\tilde{f})\) of \((X,f)\) via an at most \(2^n\)-to-one onto map \(p\) such that \(EP(f) \subset H\) and \(|p^{-1}(x)| = 1\) for \(x\in H\). For the special case that \((X,f)\) is a positively expansive dynamical system with \(\dim X = n\), \((X,f)\) is covered by a subshift \((\Sigma, \sigma)\) of the shift map \(\sigma: \{1, 2, \ldots, k\}^\infty \to \{1, 2, \ldots, k\}^\infty \) via a \(2^n\)-to-one map.
The authors also study some dynamical zero-dimensional decomposition theorems of spaces related to such maps.

MSC:

37B02 Dynamics in general topological spaces
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B45 Continua theory in dynamics
37C45 Dimension theory of smooth dynamical systems
54F45 Dimension theory in general topology

References:

[1] R. D. Anderson, On raising flows and mappings, Bull. Amer. Math. Soc., 69 (1963), 259-264. · Zbl 0113.38104 · doi:10.1090/S0002-9904-1963-10945-3
[2] J. M. Aarts, R. J. Fokkink and J. Vermeer, A dynamical decomposition theorem, Acta Math. Hunger., 94 (2002), 191-196. · Zbl 0996.54045 · doi:10.1007/s10474-002-0002-7
[3] M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions, Invent. Math., 156 (2004), 119-161. · Zbl 1216.37004 · doi:10.1007/s00222-003-0335-2
[4] M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math., 14 (2002), 713-757. · Zbl 1030.37012 · doi:10.1515/form.2002.031
[5] R. Bowen, On Axiom A Diffeomorphisms, Regional Conference Ser. in Math., 35, Amer. Math. Soc., Providence, RI, 1978. · Zbl 0383.58010
[6] R. Engelking, Dimension Theory, Państwowe Wydawnicto Naukowe, Warsaw, 1977.
[7] M. Hiraki and H. Kato, Dynamical decomposition theorems of homeomorphisms with zero-dimensional sets of periodic points, Topology Appl., 196 (2015), 54-59. · Zbl 1419.54043 · doi:10.1016/j.topol.2015.09.009
[8] W. Hurewicz, Ein Theorem der Dimensionstheorie, Ann. of Math. (2), 31 (1930), 176-180. · JFM 56.0505.03 · doi:10.2307/1968151
[9] Y. Ikegami, H. Kato and A. Ueda, Eventual colorings of homeomorphisms, J. Math. Soc. Japan, 65 (2013), 375-387. · Zbl 1275.54020 · doi:10.2969/jmsj/06520375
[10] Y. Ikegami, H. Kato and A. Ueda, Dynamical systems of finite-dimensional metric spaces and zero-dimensional covers, Topology Appl., 160 (2013), 564-574. · Zbl 1295.54036 · doi:10.1016/j.topol.2013.01.010
[11] M. V. Jakobson, On some properties of Markov partitions, Sov. Math. Dokl., 17 (1976), 247-251. · Zbl 0344.58016
[12] H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598. · Zbl 0797.54047 · doi:10.4153/CJM-1993-030-4
[13] H. Kato, Minimal sets and chaos in the sense of Devaney on continuum-wise expansive homeomorphisms, In: Continua, Lecture Notes in Pure and Appl. Math., 170, Dekker, New York, 1995, 265-274. · Zbl 0829.54025
[14] P. Krupski, K. Omiljanowski and K. Ungeheuer, Chain recurrent sets of generic mappings on compact spaces, Topology Appl., 202 (2016), 251-268. · Zbl 1378.54037 · doi:10.1016/j.topol.2016.01.015
[15] J. Kulesza, Zero-dimensional covers of finite dimensional dynamical systems, Ergodic Theory Dynam. Systems, 15 (1995), 939-950. · Zbl 0882.54034 · doi:10.1017/S014338570000969X
[16] P. Kůrka, Topological and Symbolic Dynamics, Cours Spéc. [Specialized Courses], 11, Soc. Math. France, Paris, 2003. · Zbl 1038.37011
[17] R. Mañé, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc., 252 (1979), 313-319. · Zbl 0362.54036
[18] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb., 25, Springer, Berlin, 1993. · Zbl 0791.58003
[19] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Math. Library, 64, North-Holland publishing Co., Amsterdam, 2001. · Zbl 0969.54003
[20] J. · Zbl 0129.38304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.