×

On numerical nonvanishing for generalized log canonical pairs. (English) Zbl 1461.14022

In this paper the authors consider a possible generalization of the following important conjecture in the minimal model program:
Conjecture 1.1 (Nonvanishing Conjecture). Let \( (X, B)\) be a projective log canonical pair such that \( K_X + B\) is pseudo-effective. Then \( K_X + B \sim_{\mathbb{R}} D\) for some effective \({\mathbb{R}}\)-Cartier \({\mathbb{R}}\)-divisor \(D\).
A question raised by C. Birkar and Z. Hu [Nagoya Math. J. 215, 203–224 (2014; Zbl 1314.14028)] which is a modification of the above conjecture is:
Conjecture 1.2 (Numerical Nonvanishing for Generalized Polarized Pairs). Let \((X, B + M)\) be a projective generalized log canonical pair. Suppose that
(i) \(K_X + B + M_X\) is pseudo-effective,
(ii) \(M =\sum_j \mu_jM_j\), where \(\mu_j \in {\mathbb{R}}_{>0} \) and \( M_j\) are nef Cartier \(b\)-divisors.
Then \(K_X + B + M_X \equiv D\) for some effective \({\mathbb{R}}\)-Cartier \({\mathbb{R}}\)-divisor \(D\).
In this paper, the authors
1. prove that Conjecture 1.2 is true in dimension two;
2. confirm Conjecture 1.2 in higher dimensions if \(K_X +M_X\) is not pseudo-effective;
3. prove the numerical nonvanishing for projective generalized \( lc\) threefolds with rational singularities by scaling the nef part:
Theorem. Let \( (X, B +M)\) be a projective generalized lc threefold with rational singularities such that \( M\) is an \({\mathbb{R}}_{>0}\)-linear combination of nef Cartier b-divisors. If \(K_X + B + M_X\) is pseudo-effective and \(M_X\) is \({\mathbb{R}}\) Cartier, then there exists a \(0 \leq t \leq 1\) such that \( K_X + B + tM_X\) is numerically equivalent to an effective \({\mathbb{R}}\)-Cartier \({\mathbb{R}}\)-divisor.
To prove that Conjecture 1.2 is true conditionally, the key technique (due to J.-P. Demailly et al. [Acta Math. 210, No. 2, 203–259 (2013; Zbl 1278.14022)]) is to construct a Mori fibre space \( X\dashrightarrow Y \rightarrow Z\), run appropriate MMPs over \( Y\) or \(Z\) to reach a generalized \(lc\)-trivial fibration, then apply an induction on dimension.

MSC:

14E30 Minimal model program (Mori theory, extremal rays)

Software:

MathOverflow

References:

[1] Valery Alexeev, Two two-dimensional terminations. Duke Math. J. 69 (1993), no. 3, 527-545. DOI 10.1215/S0012-7094-93-06922-0; zbl 0791.14006; MR1208810; arxiv alg-geom/9206005 · Zbl 0791.14006 · doi:10.1215/S0012-7094-93-06922-0
[2] Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. volume 4, Springer-Verlag, Berlin, 2004. xii+436 pp. zbl 1036.14016; MR2030225 · Zbl 1036.14016
[3] Thomas Bauer, On the cone of curves of an abelian variety. Amer. J. Math. 120 (1998), no. 5, 997-1006. DOI 10.1353/ajm.1998.0034; zbl 0937.14034; MR1646050; arxiv alg-geom/9712019 · Zbl 0937.14034 · doi:10.1353/ajm.1998.0034
[4] Caucher Birkar, Existence of log canonical flips and a special LMMP. Publ. Math. Inst. Hautes \'Etudes Sci. 115 (2012), 325-368. DOI 10.1007/s10240-012-0039-5; zbl 1256.14012; MR2929730; arxiv 1104.4981 · Zbl 1256.14012 · doi:10.1007/s10240-012-0039-5
[5] Caucher Birkar, Anti-pluricanonical systems on Fano varieties. Ann. of Math. (2) 190 (2019), no. 2, 345-463. DOI 10.4007/annals.2019.190.2.1; zbl 07107180; MR3997127; arxiv 1603.05765 · Zbl 1470.14078 · doi:10.4007/annals.2019.190.2.1
[6] Caucher Birkar, Paolo Cascini, Christopher Hacon, and James McKernan, Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), no. 2, 405-468. DOI 10.1090/S0894-0347-09-00649-3; zbl 1210.14019; MR2601039; arxiv math/0610203 · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
[7] Caucher Birkar and Jungkai Alfred Chen, Varieties fibred over abelian varieties with fibres of log general type. Adv. Math. 270 (2015), 206-222. DOI 10.1016/j.aim.2014.10.023; zbl 1308.14014; MR3286535; arxiv 1311.7396 · Zbl 1308.14014 · doi:10.1016/j.aim.2014.10.023
[8] Caucher Birkar and Zhengyu Hu, Polarized pairs, log minimal models, and Zariski decompositions. Nagoya Math. J. 215 (2014), 203-224. DOI 10.1215/00277630-2781096; zbl 1314.14028; MR3263528; arxiv 1302.4015 · Zbl 1314.14028 · doi:10.1215/00277630-2781096
[9] Caucher Birkar and De-Qi Zhang, Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs. Publ. Math. Inst. Hautes \'Etudes Sci. 123 (2016), 283-331. DOI 10.1007/s10240-016-0080-x; zbl 1348.14038; MR3502099; arxiv 1410.0938 · Zbl 1348.14038 · doi:10.1007/s10240-016-0080-x
[10] Raimund Blache, Riemann-Roch theorem for normal surfaces and applications. Abh. Math. Sem. Univ. Hamburg 65 (1995), 307-340. DOI 10.1007/BF02953338; zbl 0877.14007; MR1359140 · Zbl 0877.14007 · doi:10.1007/BF02953338
[11] Alfred Brauer, On a problem of partitions. Amer. J. Math. 64 (1942), 299-312. DOI 10.2307/2371684; zbl 0061.06801; MR0006196 · Zbl 0061.06801 · doi:10.2307/2371684
[12] Fr\'ed\'eric Campana and Thomas Peternell, Algebraicity of the ample cone of projective varieties, J. Reine Angew. Math. 407 (1990), 160-166. zbl 0728.14004; MR1048532 · Zbl 0728.14004
[13] Fr\'ed\'eric Campana, Jungkai A. Chen, and Thomas Peternell, Strictly nef divisors. Math. Ann. 342 (2008), no. 3, 565-585. DOI 10.1007/s00208-008-0248-x; zbl 1154.14004; MR2430991; arxiv math/0511042 · Zbl 1154.14004 · doi:10.1007/s00208-008-0248-x
[14] Jean-Pierre Demailly, Christopher D. Hacon, and Mihai P\u aun, Extension theorems, nonvanishing and the existence of good minimal models. Acta Math. 210 (2013), no. 2, 203-259. DOI 10.1007/s11511-013-0094-x; zbl 1278.14022; MR3070567; arxiv 1012.0493 · Zbl 1278.14022 · doi:10.1007/s11511-013-0094-x
[15] Tobias Dorsch and Vladimir Lazi\'c, A note on the abundance conjecture. Algebr. Geom. 2 (2015), no. 4, 476-488. DOI 10.14231/AG-2015-020; zbl 1352.14010; MR3403237; arxiv 1406.6554 · Zbl 1352.14010 · doi:10.14231/AG-2015-020
[16] Stefano Filipazzi, On a generalized canonical bundle formula and generalized adjunction, 2018. arxiv 1807.04847 · Zbl 1422.14025
[17] Osamu Fujino, Minimal model theory for log surfaces. Publ. Res. Inst. Math. Sci. 48 (2012), no. 2, 339-371. DOI 10.2977/PRIMS/71; zbl 1248.14018; MR2928144; arxiv 1001.3902 · Zbl 1248.14018 · doi:10.2977/PRIMS/71
[18] Osamu Fujino, Foundations of the minimal model program. MSJ Memoirs, 35. Mathematical Society of Japan, Tokyo, 2017. xv+289 pp. DOI 10.2969/msjmemoirs/035010000; zbl 1386.14072; MR3643725 · Zbl 1386.14072 · doi:10.2969/msjmemoirs/035010000
[19] Osamu Fujino, Fundamental properties of basic slc-trivial fibrations, 2018. arxiv 1804.11134 · Zbl 1504.14093
[20] Yoshinori Gongyo, Remarks on the non-vanishing conjecture. Algebraic geometry in east Asia-Taipei 2011, 107-116, Adv. Stud. Pure Math., 65, Math. Soc. Japan, Tokyo, 2015. zbl 1360.14054; MR3380777; arxiv 1201.1128 · Zbl 1360.14054
[21] Christopher D. Hacon and Joaqu\' in Moraga. On weak Zariski decompositions and termination of flips, 2018. arxiv 1805.01600 · Zbl 1467.14043
[22] Jingjun Han and Zhan Li, On Fujita’s conjecture for pseudo-effective thresholds, 2017. arxiv 1705.08862 · Zbl 1440.14030
[23] Jingjun Han and Zhan Li, Weak Zariski decomposition and log terminal models for generalized polarized pairs, 2018. arxiv 1806.01234v1 · Zbl 1504.14031
[24] Jingjun Han and Wenfei Liu, On a generalized canonical bundle formula for generically finite morphisms, 2019. arxiv 1905.12542v1 · Zbl 1520.14027
[25] Robin Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. xvi+496 pp. zbl 0367.14001; MR0463157 · Zbl 0367.14001
[26] Kenta Hashizume, Non-vanishing theorem for lc pairs admitting a Calabi-Yau pair. Math. Res. Lett. 26 (2019), no. 4, 1097-1113. DOI 10.4310/MRL.2019.v26.n4.a6; zbl 07124450; MR4028112; arxiv 1708.01851 · Zbl 1441.14056 · doi:10.4310/
[27] Kenta Hashizume, On the non-vanishing conjecture and existence of log minimal models. Publ. Res. Inst. Math. Sci. 54 (2018), no. 1, 89-104. DOI 10.4171/PRIMS/54-1-3; zbl 1390.14052; MR3749345; arxiv 1609.00121 · Zbl 1390.14052 · doi:10.4171/PRIMS/54-1-3
[28] Yuko Homma, Projective normality and the defining equations of ample invertible sheaves on elliptic ruled surfaces with \(e \geq 0\). Natur. Sci. Rep. Ochanomizu Univ. 31 (1980), no. 2, 61-73. zbl 0486.14001; MR0610593 · Zbl 0486.14001
[29] Sean Keel, Kenji Matsuki, and James McKernan, Log abundance theorem for threefolds. Duke Math. J. 75, no. 1 (1994), 99-120. DOI 10.1215/S0012-7094-94-07504-2; zbl 0818.14007; MR1284817 · Zbl 0818.14007 · doi:10.1215/S0012-7094-94-07504-2
[30] J\'anos Koll\'ar and Shigefumi Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., volume 134, Cambridge University Press, Cambridge, 1998. zbl 0926.14003; MR1658959 · Zbl 0926.14003
[31] Yujiro Kawamata, Subadjunction of log canonical divisors. II. Amer. J. Math. 120 (1998), no. 5, 893-899. DOI 10.1353/ajm.1998.0038; zbl 0919.14003; MR1646046; arxiv alg-geom/9712014 · Zbl 0919.14003 · doi:10.1353/ajm.1998.0038
[32] Yujiro Kawamata, On effective nonvanishing and base-point-freeness. Kodaira’s issue. Asian J. Math. 4 (2000), no. 1, 173-181. DOI 10.4310/AJM.2000.v4.n1.a11; zbl 1060.14505; MR1802918; arxiv math/0003169 · Zbl 1060.14505 · doi:10.4310/AJM.2000.v4.n1.a11
[33] Robert Lazarsfeld, Positivity in Algebraic Geometry. I. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, volume 48, Springer-Verlag, Berlin, 2004. zbl 1093.14501; MR2095471 · Zbl 1093.14501
[34] Vladimir Lazi\'{c}, Thomas Peternell, On generalised abundance. I, 2018, to appear in Publications of the Research Institute for Mathematical Sciences. arxiv 1808.00438 · Zbl 1412.14010
[35] Vladimir Lazi\'{c}, Thomas Peternell, On generalised abundance. II, 2019, to appear in Peking Mathematical Journal. DOI 10.1007/s42543-019-00022-1; arxiv 1809.02500 · Zbl 1412.14010 · doi:10.1007/s42543-019-00022-1
[36] Noboru Nakayama, Zariski-decomposition and abundance. MSJ Memoirs, volume 14. Mathematical Society of Japan, Tokyo, 2004. xiv+277 pp. zbl 1061.14018; MR2104208 · Zbl 1061.14018
[37] Fernando Serrano, The Picard group of a quasi-bundle. Manuscripta Math. 73 (1991), no. 1, 63-82. DOI 10.1007/BF02567629; zbl 0758.14006; MR1124311 · Zbl 0758.14006 · doi:10.1007/BF02567629
[38] Fernando Serrano, Strictly nef divisors and Fano threefolds. J. Reine Angew. Math., 464 (1995), 187-206. DOI 10.1515/crll.1995.464.187; zbl 0826.14006; MR1340341 · Zbl 0826.14006 · doi:10.1515/crll.1995.464.187
[39] V.V. Shokurov, 3-fold log models, J. Math. Sciences 81 (1996), 2677-2699. DOI 10.1007/BF02362335; zbl 0873.14014; MR1420223 · Zbl 0873.14014 · doi:10.1007/BF02362335
[40] V. V. Shokurov, Complements on surfaces. J. Math. Sci. (New York) 102 (2000), no. 2, 3876-3932. DOI 10.1007/BF02984106; zbl 1177.14078; MR1794169; arxiv alg-geom/9711024 · Zbl 1177.14078 · doi:10.1007/BF02984106
[41] R. van Dobben de Bruyn, Infinitely small intersections with nef \(\mathbb{R} \)-Cartier divisors. https://mathoverflow.net/questions/291154/infinitely-small-intersections-with-nef-mathbb-r-cartier-divisors
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.