×

Competitive exclusion in a general multi-species chemostat model with stochastic perturbations. (English) Zbl 1460.92129

Summary: Based on the fact that the continuous culture of microorganisms in a chemostat is subject to environmental noises, we present and analyze a stochastic competition chemostat model with general monotonic response functions and differential removal rates. The existence and boundedness of the unique positive solution are first obtained. By defining a stochastic break-even concentration for every species, we prove that at most one competitor survives in the chemostat and the winner has the smallest stochastic break-even concentration, provided its response function satisfies a technical assumption. That is to say, the competitive exclusion principle holds for the stochastic competition chemostat model. Furthermore, we find that the noise experienced by one species is adverse to its growth while may be favorable for the growth of other one species. Namely, the destinies can be exchanged between two microorganism species in the chemostat due to the environmental noise.

MSC:

92C75 Biotechnology
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI

References:

[1] Beddington, JR; May, RM, Harvesting natural populations in a randomly fluctuating environment, Science, 197, 463-465 (1977) · doi:10.1126/science.197.4302.463
[2] Butler, GJ; Wolkowicz, GSK, A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM J Appl Math, 45, 138-151 (1985) · Zbl 0569.92020 · doi:10.1137/0145006
[3] Campillo, F.; Joannides, M.; Larramendy-Valverde, I., Stochastic modeling of the chemostat, Ecol Model, 222, 2676-2689 (2011) · doi:10.1016/j.ecolmodel.2011.04.027
[4] De Leenheer, P.; Li, B.; Smith, H., Competition in the chemostat: some remarks, Can Appl Math Q, 11, 229-248 (2003) · Zbl 1132.92341
[5] Ellermeyer, SF, Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth, SIAM J Appl Math, 54, 456-465 (1994) · Zbl 0794.92023 · doi:10.1137/S003613999222522X
[6] Grasman, J.; Gee, MD; Herwaarden, OAV, Breakdown of a chemostat exposed to stochastic noise, J Eng Math, 53, 291-300 (2005) · Zbl 1158.92328 · doi:10.1007/s10665-005-9004-3
[7] Hardin, G., The competitive exclusion principle, Science, 131, 1292-1297 (1960) · doi:10.1126/science.131.3409.1292
[8] Higham, DJ, An algorithmic introduction to numerical simulation of stochastic diferential equations, SIAM Rev, 43, 525-546 (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302
[9] Hsu, SB; Hubbell, S.; Waltman, P., A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J Appl Math, 32, 366-383 (1977) · Zbl 0354.92033 · doi:10.1137/0132030
[10] Imhof, L.; Walcher, S., Exclusion and persistence in deterministic and stochastic chemostat models, J Differ Equ, 217, 26-53 (2005) · Zbl 1089.34041 · doi:10.1016/j.jde.2005.06.017
[11] Ji, C.; Jiang, D.; Shi, N., A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J Math Anal Appl, 377, 435-440 (2011) · Zbl 1216.34040 · doi:10.1016/j.jmaa.2010.11.008
[12] Kutoyants, DYA, Statistical inference for ergodic diffusion processes (2003), London: Springer, London · Zbl 1038.62073
[13] Li, B., Global asymptotic behaviour of the chemostat: general response functions and different removal rates, SIAM J Appl Math, 59, 411-422 (1998) · Zbl 0916.92025 · doi:10.1137/S003613999631100X
[14] Liu, S.; Wang, X.; Wang, L.; Song, H., Competitive exclusion in delayed chemostat models with differential removal rates, SIAM J Appl Math, 74, 634-648 (2014) · Zbl 1312.34111 · doi:10.1137/130921386
[15] Mao, X., Stochastic differential equations and applications (2007), Chichester: Horwood Publishing, Chichester · Zbl 1138.60005
[16] Smith, HL; Waltman, P., The theory of the chemostat: dynamics of microbial competition (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 1139.92029 · doi:10.1017/CBO9780511530043
[17] Wang, L.; Wolkowicz, GSK, A delayed chemostat model with general nonmonotone response functions and differential removal rates, J Math Anal Appl, 321, 452-468 (2006) · Zbl 1092.92048 · doi:10.1016/j.jmaa.2005.08.014
[18] Wang, L.; Jiang, D.; O’Regan, D., The periodic solutions of a stochastic chemostat model with periodic washout rate, Commun Nonlinear Sci Numer Simul, 37, 1-13 (2016) · Zbl 1473.92026 · doi:10.1016/j.cnsns.2016.01.002
[19] Wang, L.; Jiang, D.; Wolkowicz, GSK, Global asymptotic behavior of a multi-species stochastic chemostat model with discrete delays, J Dyn Differ Equ, 32, 849-872 (2020) · Zbl 1439.92208 · doi:10.1007/s10884-019-09741-6
[20] Wang, W.; Ma, W.; Feng, Z., Global dynamics and travelling waves for a periodic and diffusive chemostat model with two nutrients and one microorganism, Nonlinearity, 33, 4338-4380 (2020) · Zbl 1461.35092 · doi:10.1088/1361-6544/ab86ca
[21] Wolkowicz, GSK; Lu, Z., Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM J Appl Math, 52, 222-233 (1992) · Zbl 0739.92025 · doi:10.1137/0152012
[22] Wolkowicz, GSK; Xia, H., Global asymptotic behavior of a chemostat model with discrete delays, SIAM J Appl Math, 57, 1019-1043 (1997) · Zbl 0902.92023 · doi:10.1137/S0036139995287314
[23] Wolkowicz, GSK; Xia, H.; Ruan, S., Competition in the chemostat: a distributed delay model and its global asymptotic behavior, SIAM J Appl Math, 57, 1281-1310 (1997) · Zbl 0893.34067 · doi:10.1137/S0036139995289842
[24] Wolkowicz, GSK; Xia, H.; Wu, J., Global dynamics of a chemostat competition model with distributed delay, J Math Biol, 38, 285-316 (1999) · Zbl 0967.92021 · doi:10.1007/s002850050150
[25] Xu, C.; Yuan, S., An analogue of break-even concentration in an simple stochastic chemostat model, Appl Math Lett, 48, 62-68 (2015) · Zbl 1328.92047 · doi:10.1016/j.aml.2015.03.012
[26] Xu, C.; Yuan, S., Competition in the chemostat: a stochastic multi-species model and its asymptotic behavior, Math Biosci, 280, 1-9 (2016) · Zbl 1350.34041 · doi:10.1016/j.mbs.2016.07.008
[27] Xu, C.; Yuan, S.; Zhang, T., Average break-even concentration in a simple chemostat model with telegraph noise, Nonlinear Anal-Hybrid, 29, 373-382 (2018) · Zbl 1392.92085 · doi:10.1016/j.nahs.2018.03.007
[28] Yu, X.; Yuan, S., Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbations, Discrete Contin Dyn Syst B, 25, 2373-2390 (2020) · Zbl 1443.34093 · doi:10.3934/dcdsb.2020014
[29] Yuan, S.; Wu, D.; Lan, G.; Wang, H., Noise-induced transitions in a nonsmooth producerCgrazer model with stoichiometric constraints, Bull Math Biol, 82, 55 (2020) · Zbl 1443.92195 · doi:10.1007/s11538-020-00733-y
[30] Zhang, Q.; Jiang, D., Competitive exclusion in a stochastic chemostat model with Holling type II functional response, J Math Chem, 54, 777-791 (2016) · Zbl 1356.92062 · doi:10.1007/s10910-015-0589-0
[31] Zhang, T.; Chen, Z.; Han, M., Dynamical analysis of a stochastic model for cascaded continuous flow bioreactors, J Math Chem, 52, 1441-1459 (2014) · Zbl 1314.92061 · doi:10.1007/s10910-014-0321-5
[32] Zhao, D.; Yuan, S., Critical result on the break-even concentration in a single-species stochastic chemostat model, J Math Anal Appl, 434, 1336-1345 (2016) · Zbl 1335.92064 · doi:10.1016/j.jmaa.2015.09.070
[33] Zhao, Y.; Yuan, S.; Ma, J., Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, Bull Math Biol, 77, 1285-1326 (2015) · Zbl 1335.92087 · doi:10.1007/s11538-015-0086-4
[34] Zhao, S.; Yuan, S.; Wang, H., Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J Differ Equ, 268, 5113-5139 (2020) · Zbl 1433.92045 · doi:10.1016/j.jde.2019.11.004
[35] Zhu, C.; Yin, G., Asymptotic properties of hybrid diffusion systems, SIAM J Control Optim, 46, 1155-1179 (2007) · Zbl 1140.93045 · doi:10.1137/060649343
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.