×

Gradient and Lipschitz estimates for tug-of-war-type games. (English) Zbl 1460.91025

Summary: We define a random step size tug-of-war game and show that the gradient of a value function exists almost everywhere. We also prove that the gradients of value functions are uniformly bounded and converge weakly to the gradient of the corresponding \(p\)-harmonic function. Moreover, we establish an improved Lipschitz estimate when boundary values are close to a plane. Such estimates are known to play a key role in the higher regularity theory of partial differential equations. The proofs are based on cancellation and coupling methods as well as an improved version of the cylinder walk argument.

MSC:

91A15 Stochastic games, stochastic differential games
91A10 Noncooperative games
91A05 2-person games
35J92 Quasilinear elliptic equations with \(p\)-Laplacian

References:

[1] Á. Arroyo, J. Heino, and M. Parviainen, Tug-of-war games with varying probabilities and the normalized \(p (x)\)-Laplacian, Commun. Pure Appl. Anal., 16 (2017), pp. 915-944. · Zbl 1359.35062
[2] Á. Arroyo, H. Luiro, M. Parviainen, and E. Ruosteenoja, Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities, Potential Anal., 53 (2020), pp. 565-589. · Zbl 1444.91020
[3] K. Does, An evolution equation involving the normalized p-Laplacian, Commun. Pure Appl. Anal, 10 (2011), pp. 361-396. · Zbl 1229.35132
[4] A. Elmoataz, M. Toutain, and D. Tenbrinck, On the \(p\)-Laplacian and \(\infty \)-Laplacian on graphs with applications in image and data processing, SIAM J. Imaging Sci., 8 (2015), pp. 2412-2451. · Zbl 1330.35488
[5] A. Elmoataz, F. Lozes, and M. Toutain, Nonlocal PDEs on graphs: From tug-of-war games to unified interpolation on images and point clouds, J. Math. Imaging Vision, 57 (2015), pp. 381-401. · Zbl 1402.94017
[6] A. Elmoataz, X. Desquesnes, and M. Toutain, On the game \(p\)-Laplacian on weighted graphs with applications in image processing and data clustering, European J. Appl. Math., 28 (2017), pp. 922-948. · Zbl 1390.91039
[7] L. C. Evans and C. K. Smart, Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differential Equations, 42 (2011), pp. 289-299. · Zbl 1251.49034
[8] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monogr., Oxford University Press, New York, 1993. · Zbl 0780.31001
[9] P. Juutinen, P. Lindqvist, and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33 (2001), pp. 699-717. · Zbl 0997.35022
[10] B. Kawohl, J. J. Manfredi, and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages, J. Math. Pures Appl. (9), 97 (2012), pp. 173-188. · Zbl 1236.35083
[11] A. Klenke, Probability Theory. A Comprehensive Course, 2nd ed., Universitext. Springer, London, 2014. · Zbl 1295.60001
[12] R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), pp. 344-407. · Zbl 1206.53072
[13] M. Lewicka, Random tug of war games for the \(p\)-Laplacian: \(1<p<\infty \), to appear, Indiana Univ. Math. J.; also available online at Springer Briefs in Math., arXiv:1810.03413, 2019.
[14] M. Lewicka and J. J. Manfredi, The obstacle problem for the \(p\)-Laplacian via optimal stopping of tug-of-war games, Probab. Theory Related Fields, 167 (2017), pp. 349-378. · Zbl 1358.60058
[15] P. Lindqvist, Notes on the \(p\)-Laplace Equation, 102, Springer, London, 2019. · Zbl 1421.35002
[16] Q. Liu and A. Schikorra, General existence of solutions to dynamic programming equations, Commun. Pure Appl. Anal., 14 (2015), pp. 167-184. · Zbl 1326.35395
[17] H. Luiro and M. Parviainen, Regularity for nonlinear stochastic games, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), pp. 1435-1456. · Zbl 1398.91058
[18] H. Luiro, M. Parviainen, and E. Saksman, Harnack’s inequality for \(p\)-harmonic functions via stochastic games, Comm. Partial Differential Equations, 38 (2013), pp. 1985-2003. · Zbl 1287.35044
[19] H. Luiro, M. Parviainen, and E. Saksman, On the existence and uniqueness of \(p\)-harmonious functions, Differential Integral Equations, 27 (2014), pp. 201-216. · Zbl 1324.49029
[20] J. J. Manfredi, M. Parviainen, and J. D. Rossi, An asymptotic mean value characterization for \(p\)-harmonic functions, Proc. Amer. Math. Soc., 258 (2010), pp. 713-728. · Zbl 1187.35115
[21] J. J. Manfredi, M. Parviainen, and J. D. Rossi, On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), pp. 215-241. · Zbl 1252.91014
[22] K. Nyström and M. Parviainen, Tug-of-war, market manipulation, and option pricing, Math. Finance, 27 (2017), pp. 279-312. · Zbl 1541.91247
[23] Y. Peres and S. Sheffield, Tug-of-war with noise: A game-theoretic view of the \(p\)-Laplacian, Duke Math. J., 145 (2008), pp. 91-120. · Zbl 1206.35112
[24] Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), pp. 167-210. · Zbl 1206.91002
[25] E. Ruosteenoja, Local regularity results for value functions of tug-of-war with noise and running payoff, Adv. Calc. Var., 9 (2016), pp. 1-17. · Zbl 1331.35069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.