×

Black hole dynamics in power-law based metric \(f(R)\) gravity. (English) Zbl 1460.83118

Summary: In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by the A. A. Starobinsky model [Phys. Lett., B 91, No. 1, 99–102 (1980; Zbl 1371.83222)]. In our study, it is observed that the presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that the mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity, and the more the accretion rate, the more is mass loss. Particularly the black holes, whose formation masses are nearly \(10^{20}\) gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric \(f(R)\) gravity is \(10^{12} M_{\odot}\), where \(M_{\odot}\) represents the solar mass.

MSC:

83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C47 Methods of quantum field theory in general relativity and gravitational theory
83C57 Black holes
85A40 Astrophysical cosmology
83C56 Dark matter and dark energy

Citations:

Zbl 1371.83222

References:

[1] Riess, AG, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009-1038 (1998)
[2] Perlmutter, S., Measurements of Omega and Lambda from 42 high-redshift supernovae, Astrophys. J., 517, 565-586 (1999) · Zbl 1368.85002
[3] Caldwell, RR; Dave, R.; Steinhardt, PJ, Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett., 80, 1582-1585 (1998) · Zbl 1371.83193
[4] Zlatev, I.; Wang, L.; Steinhardt, PJ, Quintessence, cosmic coincidence, and the cosmological constant, Phys. Rev. Lett., 82, 896-899 (1999)
[5] Sotiriou, TP; Faraoni, V., \(f(R)\) theories of gravity, Rev. Mod. Phys., 82, 451-497 (2010) · Zbl 1205.83006
[6] Nojiri, S.; Odintsov, SD, Unified cosmic history in modified gravity: from \(f(R)\) theory to Lorentz non-invariant models, Phys. Rep., 505, 59-144 (2011)
[7] Weinberg, S., Gravitation and Cosmology (1972), New York: Wiley, New York
[8] Linde, A., Particle Physics and Inflationary Cosmology (1990), Florida, USA: CRC Press, Florida, USA
[9] Kolb, EW; Turner, MS, The Early Universe (1994), USA: Westview Press, USA
[10] Guth, AH, Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, 23, 347-356 (1981) · Zbl 1371.83202
[11] Mukhanov, V. F.: CMB, Quantum fluctuations and the predictive power of inflation. (2003) arXiv:astro-ph/0303077
[12] Burles, SK; Nollett, KM; Turner, MS, Big-Bang nucleosynthesis predictions for precision cosmology, Astrophys. J., 552, L1-L6 (2001)
[13] Carroll, SM; Kaplinghat, M., Testing the Friedmann equation: The expansion of the universe during big-bang nucleosynthesis, Phys. Rev. D, 65, 063507 (2002)
[14] Lukash, VN; Mikheeva, EV; Malinovsky, AM, Formation of the large-scale structure of the universe, Phys. Usp., 54, 983-1005 (2011)
[15] Padmanabhan, T., Cosmological constant – the weight of the vacuum, Phys. Rept., 380, 235-320 (2003) · Zbl 1027.83544
[16] Carroll, SM, The cosmological constant, Living Rev. Rel., 4, 1 (2001) · Zbl 1023.83022
[17] Sahni, V.; Starobinsky, A., The case for a positive cosmological Lambda-term, Int. J. Mod. Phys. D, 9, 373-444 (2000)
[18] Peebles, PJE; Ratra, B., The cosmological constant and dark energy, Rev. Mod. Phys., 75, 559-606 (2003) · Zbl 1205.83082
[19] Ratra, B.; Peebles, PJE, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D, 37, 3406 (1988)
[20] Bahcall, NA, The cosmic triangle: revealing the state of the universe, Science, 284, 1481-1488 (1999)
[21] Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, PJ, Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration, Phys. Rev. Lett., 85, 4438-4441 (2000)
[22] Caldwell, RR; Kamionkowski, M.; Weinberg, NN, Phantom energy: dark energy with \(w < {-}1\) causes a cosmic doomsday, Phys. Rev. Lett., 91, 071301 (2003)
[23] Babichev, E.; Dokuchaev, V.; Eroshenko, Yu, Black hole mass decreasing due to phantom energy accretion, Phys. Rev. Lett., 93, 021102 (2004)
[24] Alam, U.; Sahni, V.; Deep Saini, T.; Starobinsky, AA, Is there supernova evidence for dark energy metamorphosis?, Mon. Not. Roy. Astron. Soc., 354, 275-291 (2004)
[25] Kamenshchik, A.; Moschella, U.; Pasquier, V., An alternative to quintessence, Phys. Lett. B, 511, 265-268 (2001) · Zbl 0969.83556
[26] Bento, MC; Bertolami, O.; Sen, AA, Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification, Phys. Rev. D, 66, 043507 (2002)
[27] Wetterich, C., The cosmon model for an asymptotically vanishing time-dependent cosmological constant, Astron. Astrophys., 301, 321-328 (1995)
[28] Amendola, L., Coupled quintessence, Phys. Rev. D, 62, 043511 (2000)
[29] Yang, W.; Pan, S.; Barrow, JD, Large-scale stability and astronomical constraints for coupled dark-energy models, Phys. Rev. D, 97, 043529 (2018)
[30] Nayak, B.; Singh, LP, Present acceleration of the universe, holographic energy and Brans-Dicke theory, Mod. Phys. Lett. A, 24, 1785-1792 (2009) · Zbl 1176.83165
[31] Sahu, D., Nayak, B.: Effect of interacting dark energy on expansion of the universe. (2019) arXiv:1912.12000
[32] DeWitt, BS, Quantum theory of gravity I, The Canonical Theory. Phys. Rev., 160, 1113-1148 (1967) · Zbl 0158.46504
[33] Birrell, ND; Davies, PCW, Quantum Fields in Curved Space (1982), Cambridge: Cambridge University Press, Cambridge · Zbl 0476.53017
[34] Muller-Hoissen, F., Spontaneous compactification with quadratic and cubic curvature terms, Phys. Lett. B, 163, 106-110 (1985)
[35] Metsaev, RR; Tseytlin, AA, Curvature cubed terms in string theory effective actions, Phys. Lett. B, 185, 52-58 (1987)
[36] Bekenstein, JD, Relativistic gravitation theory for the modified Newtonian dynamics paradigm, Phys. Rev. D, 70, 083509 (2004)
[37] Capozziello, S.; Cardone, VF; Troisi, A., Low surface brightness galaxy rotation curves in the low energy limit of \(Rn\) gravity: no need for dark matter?, Mon. Not. R. Astron. Soc., 375, 1423-1440 (2007)
[38] Mendoza, S.; Rosas-Guevara, YM, Gravitational waves and lensing of the metric theory proposed by Sobouti, Astron. Astrophys., 472, 367-371 (2007) · Zbl 1175.83028
[39] Buchdhal, HA, Non-linear Lagrangians and cosmological theory, Mon. Not. R. Astron. Soc., 150, 1-8 (1970)
[40] Nojiri, S.; Odintsov, SD, Introduction to modified gravity and gravitational alternative for dark energy, Int. J. Geom. Meth. Mod. Phys., 4, 115-146 (2007) · Zbl 1112.83047
[41] Nojiri, S.; Odintsov, SD, Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration, Phys. Rev. D, 68, 123512 (2013)
[42] Carroll, SM; Duvvuri, V.; Trodden, M.; Turner, MS, Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D, 70, 043528 (2004)
[43] De Felice, A.; Tsujikawa, S., \(f(R)\) theories, Living Rev. Rel., 13, 3 (2010) · Zbl 1215.83005
[44] Jain, B.; Khoury, J., Cosmological tests of gravity, Ann. Phys., 325, 1479-1516 (2010) · Zbl 1196.83037
[45] Sporea, C.A.: Notes on f(R) theories of gravity. (2014) arXiv:1403.3852
[46] Liu, T.; Zhang, X.; Zhao, W., Constraining \(f(R)\) gravity in solar system, cosmology and binary pulsar systems, Phys. Lett. B, 777, 286-293 (2018) · Zbl 1411.83091
[47] Bengochea, GR; Ferraro, R., Dark torsion as the cosmic speed-up, Phys. Rev. D, 79, 124019 (2009)
[48] Femaro, R.; Fiorini, F., Modified teleparallel gravity: Inflation without an inflaton, Phys. Rev. D, 75, 084031 (2007)
[49] Harko, T.; Lobo, FSN; Nojiri, S.; Odintsov, SD, \(f(R, T)\) gravity, Phys. Rev. D, 84, 024020 (2011)
[50] Tretyakov, PV, Cosmology in modified \(f(R, T)\)-gravity, Eur. Phys. J. C, 78, 896 (2018)
[51] Singh, JK; Bamba, K.; Nagpal, R.; Pacif, SKJ, Bouncing cosmology in f(R,T) gravity, Phys. Rev. D, 97, 123536 (2018)
[52] Baojiu, L.; Barrrow, JD, Cosmology of \(f(R)\) gravity in the metric variational approach, Phys. Rev. D, 75, 084010 (2007)
[53] Mongwane, B., Characteristic formulation for metric \(f(R)\) gravity, Phys. Rev. D, 96, 024028 (2017)
[54] Goheer, N.; Goswami, R.; Dunsby, PKS; Ananda, K., Coexistence of matter dominated and accelerating solutions in \(f(G)\) gravity, Phys. Rev. D, 80, 121301(R) (2009)
[55] Capozziello, S.; Martin-Morumo, P.; Rubamo, C., Dark energy and dust matter phases from an exact \(f(R)\)-cosmology model, Phys. Lett. B, 664, 12-15 (2008)
[56] Carr, BJ; Gilbert, JH; Lidsey, JE, Black hole relics and inflation: limits on blue perturbation spectra, Phys. Rev. D, 50, 4853-4867 (1994)
[57] Khlopov, MY; Malomed, BA; Zeldovich, YB, Gravitational instability of scalar fields and formation of primordial black holes, Mon. Not. R. Astron. Soc., 215, 575-589 (1985)
[58] Carr, BJ, The primordial black hole mass spectrum, Astrophys. J., 201, 1-19 (1975)
[59] Hawking, SW, Gravitationally collapsed objects of very low mass, Mon. Not. R. Astron. Soc., 152, 75-78 (1971)
[60] Kholpov, MY; Polnarev, A., Primordial black holes as a cosmological test of grand unification, Phys. Lett. B, 97, 383-387 (1980)
[61] Niemeyer, JC; Jedamzik, K., Near-critical gravitational collapse and the initial mass function of primordial black holes, Phys. Rev. Lett., 80, 5481-5484 (1998)
[62] Zel’dovich, YB; Novikov, ID, The hypothesis of cores retarded during expansion and the hot cosmological model, Soviet Astronomy- AJ, 10, 602-603 (1967)
[63] Hawking, SW, Particle creation by black holes, Commun. Math. Phys., 43, 199-220 (1975) · Zbl 1378.83040
[64] Barrow, JD; Copeland, EJ; Kolb, EW; Liddle, AR, Baryogenesis in extended inflation. II. Baryogenesis via primordial black holes, Phys. Rev. D, 43, 984-994 (1991)
[65] Majumdar, AS; Das Gupta, P.; Saxena, RP, Baryogenesis from black hole evaporation, Int. J. Mod. Phys. D, 4, 517-529 (1995)
[66] Upadhyay, N.; Das Gupta, P.; Saxena, RP, Baryogenesis from primordial black holes after the electroweak phase transition, Phys. Rev. D, 60, 063513 (1999)
[67] Dokuchaev, VI; Eroshenko, YN; Rubin, SG, Early formation of galaxies induced by clusters of black holes, Astron. Rep., 52, 779-789 (2008)
[68] Mack, KJ; Ostriker, JP; Ricotti, M., Growth of structure seeded by primordial black holes, Astrophys. J., 665, 1277-1287 (2007)
[69] Blais, D.; Kiefer, C.; Polarski, D., Can primordial black holes be a significant part of dark matter?, Phys. Lett. B, 535, 11-16 (2002)
[70] Blais, D.; Bringmann, T.; Kiefer, C.; Polarski, D., Accurate results for primordial black holes from spectra with a distinguished scale, Phys. Rev. D, 67, 024024 (2003)
[71] Barrau, A.; Blais, D.; Boudoul, G.; Polarski, D., Peculiar relics from primordial black holes in the inflationary paradigm, Ann. Phys. (Leipzig), 13, 115-123 (2004) · Zbl 1036.83014
[72] Majumdar, AS, Domination of black hole accretion in brane cosmology, Phys. Rev. Lett., 90, 031303 (2003) · Zbl 1267.83097
[73] Majumdar, AS; Gangopadhyay, D.; Singh, LP, Evolution of primordial black holes in Jordan-Brans-Dicke cosmology, Mon. Not. R. Astron. Soc., 385, 1467-1470 (2008)
[74] Nayak, B.; Singh, LP; Majumdar, AS, Effect of accretion on primordial black holes in Brans-Dicke theory, Phys. Rev. D, 80, 023529 (2009)
[75] Nayak, B.; Singh, LP, Note on nonstationarity and accretion by primordial black holes in Brans-Dicke theory, Phys. Rev. D, 82, 127301 (2010)
[76] Nayak, B.; Jamil, M., Effect of vacuum energy on evolution of primordial black holes in Einstein gravity, Phys. Lett. B, 709, 118-122 (2012)
[77] Dwivedee, D.; Nayak, B.; Singh, LP, Evolution of primordial black hole mass spectrum in Brans-Dicke theory, Int. J. Mod. Phys. D, 22, 1350022 (2013)
[78] Mahapatra, S.; Nayak, B., Accretion of radiation and rotating primordial black holes, J. Exp. Theor. Phys., 122, 243-247 (2016)
[79] Myung, YS; Moon, T.; Son, EJ, Stability of \(f(R)\) black holes, Phys. Rev. D, 83, 124009 (2011)
[80] Starobinsky, AA, A new type of isotropic cosmological models without singularity, Phys. Lett. B, 91, 99-102 (1980) · Zbl 1371.83222
[81] Starobinsky, AA, Evolution of small perturbations of isotropic cosmological models with one-loop quantum gravitational corrections, J. Exp. Theor. Phys. Lett., 34, 438-441 (1981)
[82] Starobinsky, AA, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett. B, 117, 175-178 (1982)
[83] Barrow, JD; Carr, BJ, Formation and evaporation of primordial black holes in scalar-tensor gravity theories, Phys. Rev. D, 54, 3920-3931 (1996)
[84] dos Santos, MV; Reis, RRR; Waga, I., Constraining the cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data, J. Cosmol. Astropart. Phys., 2016, 2, 066 (2016)
[85] Nayak, B.; Singh, LP, Accretion, primordial black holes and standard cosmology, Pramana J. Phys., 76, 173-181 (2011)
[86] Nayak, B.; Singh, LP, Phantom energy accretion and primordial black holes evolution in Brans-Dicke theory, Eur. Phys. J. C, 71, 1837 (2011)
[87] Nayak, B., Interacting holographic dark energy, the present accelerated expansion and black holes, Grav. Cosmol., 26, 273-280 (2020) · Zbl 1454.83052
[88] Nayak, B.; Majumdar, AS; Singh, LP, Astrophysical constraints on primordial black holes in Brans-Dicke theory, J. Cosmol. Astropart. Phys., 2010, 8, 039 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.