×

On the accuracy of bicompact schemes as applied to computation of unsteady shock waves. (English. Russian original) Zbl 1460.76643

Comput. Math. Math. Phys. 60, No. 5, 864-878 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 5, 884-899 (2020).
Summary: Bicompact schemes that have the fourth order of classical approximation in space and a higher order (at least the second) in time are considered. Their accuracy is studied as applied to a quasilinear hyperbolic system of conservation laws with discontinuous solutions involving shock waves with variable propagation velocities. The shallow water equations are used as an example of such a system. It is shown that a nonmonotone bicompact scheme has a higher order of convergence in domains of influence of unsteady shock waves. If spurious oscillations are suppressed by applying a conservative limiting procedure, then the bicompact scheme, though being high-order accurate on smooth solutions, has a reduced (first) order of convergence in the domains of influence of shock waves.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Godunov, S. K., Difference method for computing discontinuous solutions of fluid dynamics equations, Mat. Sb., 47, 271-306 (1959) · Zbl 0171.46204
[2] Van Leer, B., Toward the ultimate conservative difference scheme: V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223
[3] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393 (1983) · Zbl 0565.65050
[4] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[5] Liu, X.; Tadmor, E., Third order nonoscillatory central scheme for hyperbolic conservation laws, Numer. Math., 79, 397-425 (1998) · Zbl 0906.65093
[6] Cockburn, B., An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations, Lect. Notes Math., 1697, 151-268 (1998) · Zbl 0927.65120
[7] Karabasov, S. A.; Goloviznin, V. M., Compact accurately boundary-adjusting high-resolution technique for fluid dynamics, J. Comput. Phys., 228, 7426-7451 (2009) · Zbl 1172.76034
[8] Ostapenko, V. V., Symmetric compact schemes with higher order conservative artificial viscosities, Comput. Math. Math. Phys., 42, 980-999 (2002) · Zbl 1077.65507
[9] Fiorina, B.; Lele, S. K., An artificial nonlinear diffusivity method for supersonic reacting flows with shocks, J. Comput. Phys., 222, 246-264 (2006) · Zbl 1216.76030
[10] Kawai, S.; Lele, S. K., Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes, J. Comput. Phys., 227, 9498-9526 (2008) · Zbl 1359.76223
[11] Kurganov, A.; Liu, Y., New adaptive artificial viscosity method for hyperbolic systems of conservation laws, J. Comput. Phys., 231, 8114-8132 (2012) · Zbl 1284.65112
[12] Ekaterinaris, J. A., Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics, J. Comput. Phys., 156, 272-299 (1999) · Zbl 0957.76051
[13] Yee, H. C.; Sandham, N. D.; Djomehri, M. J., Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys., 150, 199-238 (1999) · Zbl 0936.76060
[14] Yee, H. C.; Sjogreen, B., Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems, Comput. Fluids, 37, 593-619 (2008) · Zbl 1237.76111
[15] Darian, H. M.; Esfahanian, V.; Hejranfar, K., A shock-detecting sensor for filtering of high-order compact finite difference schemes, J. Comput. Phys., 230, 494-514 (2011) · Zbl 1283.76045
[16] Adams, N. A.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27-51 (1996) · Zbl 0859.76041
[17] Pirozzoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, J. Comput. Phys., 178, 81-117 (2002) · Zbl 1045.76029
[18] Ren, Y.-X.; Liu, M.; Zhang, H., A characteristicwise hybrid compact-WENO scheme for solving hyperbolic conservation laws, J. Comput. Phys., 192, 365-386 (2003) · Zbl 1037.65090
[19] Shen, Y.; Yang, G., Hybrid finite compact-WENO schemes for shock calculation, Int. J. Numer. Methods Fluids, 53, 531-560 (2007) · Zbl 1104.76065
[20] Bragin, M. D.; Rogov, B. V., Minimal dissipation hybrid bicompact schemes for hyperbolic equations, Comput. Math. Math. Phys., 56, 947-961 (2016) · Zbl 1350.65085
[21] Ostapenko, V. V., Convergence of finite-difference schemes behind a shock front, Comput. Math. Math. Phys., 37, 1161-1172 (1997) · Zbl 1122.76355
[22] Casper, J.; Carpenter, M. H., Computational consideration for the simulation of shock-induced sound, SIAM J. Sci. Comput., 19, 813-828 (1998) · Zbl 0918.76045
[23] Ostapenko, V. V., Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves, Comput. Math. Math. Phys., 40, 1784-1800 (2000) · Zbl 1001.76069
[24] Kovyrkina, O. A.; Ostapenko, V. V., On the convergence of shock-capturing difference schemes, Dokl. Math., 82, 599-603 (2010) · Zbl 1204.65105
[25] Kovyrkina, O. A.; Ostapenko, V. V., On the practical accuracy of shock-capturing schemes, Math. Models Comput. Simul., 6, 183-191 (2014)
[26] Mikhailov, N. A., On the order of convergence of WENO schemes behind the shock front, Mat. Model., 27, 129-138 (2015) · Zbl 1340.76048
[27] Kovyrkina, O. A.; Ostapenko, V. V., On the construction of combined finite-difference schemes of high accuracy, Dokl. Math., 97, 77-81 (2018) · Zbl 1393.65014
[28] Ladonkina, M. E.; Neklyudova, O. A.; Ostapenko, V. V.; Tishkin, V. F., On the accuracy of the discontinuous Galerkin method in calculation of shock waves, Comput. Math. Math. Phys., 58, 1344-1353 (2018) · Zbl 1412.76056
[29] Kovyrkina, O. A.; Ostapenko, V. V., Monotonicity and accuracy of the KABARE scheme as applied to computation of generalized solutions with shock waves, Vychisl. Tekhnol., 23, 37-54 (2018)
[30] Ostapenko, V. V., Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity, Comput. Math. Math. Phys., 38, 1299-1311 (1998) · Zbl 1086.76552
[31] Rusanov, V. V., Third-order accurate shock-capturing schemes for computing discontinuous solutions, Dokl. Akad. Nauk SSSR, 180, 1303-1305 (1968) · Zbl 0179.22202
[32] Rogov, B. V.; Mikhailovskaya, M. N., Monotone high-order accurate compact scheme for quasilinear hyperbolic equations, Dokl. Math., 84, 747-752 (2011) · Zbl 1317.65177
[33] Rogov, B. V.; Mikhailovskaya, M. N., Monotone high-accuracy compact running scheme for quasi-linear hyperbolic equations, Math. Model. Comput. Simul., 4, 375-384 (2012)
[34] Mikhailovskaya, M. N.; Rogov, B. V., Monotone compact running schemes for systems of hyperbolic equations, Comput. Math. Math. Phys., 52, 578-600 (2012) · Zbl 1274.35235
[35] Rogov, B. V., Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations, Appl. Numer. Math., 139, 136-155 (2019) · Zbl 1416.65281
[36] Kennedy, C. A.; Carpenter, M. H., Diagonally implicit Runge-Kutta methods for stiff ODEs, Appl. Numer. Math., 146, 221-244 (2019) · Zbl 1437.65061
[37] Rogov, B. V., High-order accurate monotone compact running scheme for multidimensional hyperbolic equations, Comput. Math. Math. Phys., 53, 205-214 (2013) · Zbl 1274.65239
[38] Chikitkin, A. V.; Rogov, B. V.; Utyuzhnikov, S. V., High-order accurate monotone compact running scheme for multidimensional hyperbolic equations, Appl. Numer. Math., 93, 150-163 (2015) · Zbl 1325.65122
[39] Chikitkin, A. V.; Rogov, B. V., Family of central bicompact schemes with spectral resolution property for hyperbolic equations, Appl. Numer. Math., 142, 151-170 (2019) · Zbl 1419.65013
[40] A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).
[41] Rogov, B. V.; Bragin, M. D., On spectral-like resolution properties of fourth-order accurate symmetric bicompact schemes, Dokl. Math., 96, 140-144 (2017) · Zbl 1376.65123
[42] Demidovich, V. P.; Maron, I. A., Foundations of Numerical Methods (1960), Moscow: Fizmatgiz, Moscow · Zbl 0096.09303
[43] Zlatev, Z.; Dimov, I.; Farago, I.; Havasi, A., Richardson Extrapolation (2018), Berlin: De Gruyter, Berlin · Zbl 1478.65003
[44] Stoker, J. J., Water Waves (1957), New York: Wiley, New York · Zbl 0078.40805
[45] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff ODE’s, SIAM J. Numer. Anal., 14, 1006-1021 (1977) · Zbl 0374.65038
[46] M. D. Bragin and B. V. Rogov, Preprint No. 8, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2019).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.