×

Characteristics of the turbulent non-turbulent interface in a spatially evolving turbulent mixing layer. (English) Zbl 1460.76418

Summary: The highly convoluted interface separating the turbulent and non-turbulent regions in a turbulent mixing layer is experimentally investigated using the particle image velocimetry (PIV) technique. The mixing layer was generated using a fine screen/mesh in one half of the test section of a low-speed wind tunnel. The PIV data, which were acquired with high spatial resolution in the self-similar regime of the flow, allow us to identify the turbulent/non-turbulent interface (TNTI) using a suitable threshold value of the absolute spanwise vorticity, \(| \omega_z|\). The threshold values for the top and bottom interfaces of the mixing layer are found to be different, and the probability density function (PDF) of the interface position for both the interfaces is found to follow the Gaussian distribution. Interestingly, the PDF of the interface orientation reveals two clear peaks, and this is attributed to the sustained large-scale motions in a mixing layer, compared to the other free-shear flows, as is also substantiated by further analyses such as the linear stochastic estimation and the conditional analysis of the transverse velocity profile. The linear stochastic analysis also shows the presence of large vorticity structures of the order of the Taylor microscale at the mean TNTI location in a mixing layer. Furthermore, the present work reveals that, using the spanwise component of vorticity alone, we can experimentally identify and estimate the thickness of the viscous superlayer from the conditional profiles of the diffusion term and the correlation coefficient of the dissipation and the diffusion terms in the enstropy transport equation. The present value of the viscous superlayer thickness of \(5 \eta-6\eta \) (where \(\eta\) is the Kolmogorov length scale) compares well with the values reported in the literature for other shear flows. Although both the interfaces are found to behave like a fractal with a dimension of 1.3 in two dimensions, one can find dominant length scales of the order of the thickness of the viscous superlayer, the thickness of the TNTI and the width of the mixing layer from the pre-multiplied power spectra of the autocorrelation functions of the interface curvature, the normal velocity and the interface position, along the TNTI, respectively. In addition, we find that the TNTI characteristics do not show significant dependence on the velocity ratios and \(Re_\lambda\) considered in the present study. Furthermore, the conditional transverse velocity profiles indicate that the entrainment characteristics for the upper and lower TNTIs may be asymmetric in nature.

MSC:

76F25 Turbulent transport, mixing
76F10 Shear flows and turbulence
Full Text: DOI

References:

[1] Adrian, R. J.2007Conditional Averages and Stochastic Estimation. In Handbook of Experimental Fluid Mechanics (ed. Tropea, C., Yarin, A. L. & Foss, J. F.), pp. 1370-1378. Springer.
[2] Adrian, R. J., Jones, B. G., Chung, M. K., Hassan, Y., Nithianandan, C. K. & Tung, A. T. C.1989Approximation of turbulent conditional averages by stochastic estimation. Phys. Fluids1 (6), 992-998.
[3] Anderson, P., Larue, J. C. & Libby, P. A.1979Preferential entrainment in a two-dimensional turbulent jet in a moving stream. Phys. Fluids22 (10), 1857-1861.
[4] Attili, A., Cristancho, J. C. & Bisetti, F.2014Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer. J. Turbul.15 (9), 555-568.
[5] Balamurugan, G. & Mandal, A. C.2017Experiments on localized secondary instability in bypass boundary layer transition. J. Fluid Mech.817, 217-263.
[6] Balamurugan, G., Rodda, A., Philip, J. & Mandal, A. C.2018Experimental study of turbulent non-turbulent interface in a planar mixing layer using kinetic energy criteria. In 7th International and 45th National Conference on Fluid Mechanics and Fluid Power, IIT Bombay, Mumbai, India. · Zbl 1460.76418
[7] Bell, J. & Mehta, R.1990Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J.28 (12), 2034-2042.
[8] Bisset, D. K., Hunt, J. C. R. & Rogers, M. M.2002The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech.451, 383-410. · Zbl 1156.76397
[9] Bohl, D. G. & Koochesfahani, M. M.2009MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. J. Fluid Mech.620, 63-88. · Zbl 1156.76305
[10] Borrell, G. & Jiménez, J.2016Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech.801, 554-596. · Zbl 1462.76104
[11] Brown, G. L. & Roshko, A.1974On density effects and large structure in turbulent mixing layers. J. Fluid Mech.64, 775-816. · Zbl 1416.76061
[12] Carlier, J. & Sodjavi, K.2016Turbulent mixing and entrainment in a stratified horizontal plane shear layer: joint velocity-temperature analysis of experimental data. J. Fluid Mech.806, 542-579.
[13] Champagne, F. H., Pao, Y. H. & Wygnanski, I. J.1976On the two-dimensional mixing region. J. Fluid Mech.74, 209-250.
[14] Chauhan, K., Philip, J. & Marusic, I.2014aScaling of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech.751, 298-328.
[15] Chauhan, K., Philip, J., De Silva, C. M., Hutchins, N. & Marusic, I.2014bThe turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech.742, 119-151.
[16] Christensen, K. T. & Adrian, R. J.2001Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech.431, 433-443. · Zbl 1008.76029
[17] Coleman, H. & Steele, W.2009Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd edn. Wiley.
[18] Corrsin, S. & Kistler, A. L.1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. 1244.
[19] Foss, J. F., Bade, K. M., Neal, D. R., Prevost, R. J. & Morris, S. C.2017Single stream shear layer and the viscous super layer. In International Symposium on Turbulence and Shear Flow Phenomena, Chicago, USA, TSFP-10. Begell House.
[20] Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H.2005Transition induced by free-stream turbulence. J. Fluid Mech.527, 1-25. · Zbl 1142.76303
[21] Gaster, M., Kit, E. & Wygnanski, I.1985Large-scale structures in a forced turbulent mixing layer. J. Fluid Mech.150, 23-39.
[22] Girimaji, S. S.1991Asymptotic behaviour of curvature of surface elements in isotropic turbulence. Phys. Fluids3 (7), 1772-1777. · Zbl 0745.76024
[23] Girimaji, S. S. & Pope, S. B.1992Propagating surfaces in isotropic turbulence. J. Fluid Mech.234, 247-277. · Zbl 0744.76063
[24] Gui, L. & Wereley, S. T.2002A correlation-based continuous window-shift technique to reduce the peak-locking effect in digital PIV image evaluation. Exp. Fluids32 (4), 506-517.
[25] Holzner, M. & Lüthi, B.2011Laminar superlayer at the turbulence boundary. Phys. Rev. Lett.106 (13), 134503.
[26] Jahanbakhshi, R. & Madnia, C. K.2016Entrainment in a compressible turbulent shear layer. J. Fluid Mech.797, 564-603. · Zbl 1422.76094
[27] Jahanbakhshi, R. & Madnia, C. K.2018aThe effect of heat release on the entrainment in a turbulent mixing layer. J. Fluid Mech.844, 92-126. · Zbl 1460.76422
[28] Jahanbakhshi, R. & Madnia, C. K.2018bViscous superlayer in a reacting compressible turbulent mixing layer. J. Fluid Mech.848, 743-755. · Zbl 1404.76132
[29] Jahanbakhshi, R., Vaghefi, N. S. & Madnia, C. K.2015Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer. Phys. Fluids27 (10), 105105.
[30] Khashehchi, M., Ooi, A., Soria, J. & Marusic, I.2013Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. Exp. Fluids54 (1), 1449.
[31] Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F.1970Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech.41, 283-325.
[32] Krug, D., Chung, D., Philip, J. & Marusic, I.2017Global and local aspects of entrainment in temporal plumes. J. Fluid Mech.812, 222-250. · Zbl 1383.76435
[33] Krug, D., Holzner, M., Lüthi, B., Wolf, M., Kinzelbach, W. & Tsinober, A.2015The turbulent/non-turbulent interface in an inclined dense gravity current. J. Fluid Mech.765, 303-324.
[34] Kurian, T. & Fransson, J. H. M.2009Grid-generated turbulence revisited. Fluid Dynamics Research, vol. 41, (2), p. 021403. IOP Publishing. · Zbl 1286.76008
[35] Kwon, Y. S., Philip, J., De Silva, C. M., Hutchins, N. & Monty, J. P.2014The quiescent core of turbulent channel flow. J. Fluid Mech.751, 228-254. · Zbl 1416.76063
[36] Lourenco, L. & Krothapalli, A.1995On the accuracy of velocity and vorticity measurements with PIV. Exp. Fluids18 (6), 421-428.
[37] Mandal, A. C., Venkatakrishnan, L. & Dey, J.2010A study on boundary layer transition induced by free stream turbulence. J. Fluid Mech.660, 114-146. · Zbl 1205.76019
[38] Mandelbrot, B. B.1982The Fractal Geometry of Nature. W. H. Freeman and Company. · Zbl 0504.28001
[39] Mashayek, A. & Peltier, W. R.2012The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1. Shear aligned convection, pairing, and braid instabilities. J. Fluid Mech.708, 5-44. · Zbl 1275.76102
[40] Mathew, J. & Basu, A. J.2002Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids14 (7), 2065-2072. · Zbl 1185.76246
[41] Mathew, J., Mahle, I. & Friedrich, R.2008Effects of compressibility and heat release on entrainment processes in mixing layers. J. Turbul.9 (14), 1-12.
[42] Mehta, R. D.1991Effect of velocity ratio on plane mixing layer development: influence of the splitter plate wake. Exp. Fluids10 (4), 194-204.
[43] Mistry, D., Dawson, J. R., Philip, J. & Marusic, I.2017The influence of turbulent/non-turbulent interface geometry on local entrainment. In International Symposium on Turbulence and Shear Flow Phenomena, Chicago, USA, TSFP-10. Begell House.
[44] Mistry, D., Philip, J. & Dawson, J. R.2019Kinematics of local entrainment and detrainment in a turbulent jet. J. Fluid Mech.871, 896-924. · Zbl 1419.76283
[45] Mistry, D., Philip, J., Dawson, J. R. & Marusic, I.2016Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech.802, 690-725. · Zbl 1462.76122
[46] Oguchi, H. & Inoue, O.1984Mixing layer produced by a screen and its dependence on initial conditions. J. Fluid Mech.142, 217-231.
[47] Orfanidis, S. J.2010Introduction to Signal Processing. Prentice Hall.
[48] Phani Kumar, P., Mandal, A. C. & Dey, J.2015Effect of a mesh on boundary layer transitions induced by free-stream turbulence and an isolated roughness element. J. Fluid Mech.772, 445-477.
[49] Philip, J., Bermejo-Moreno, I., Chung, D. & Marusic, I.2015Characteristics of the entrainment velocity in a developing wake. In International Symposium on Turbulence and Shear Flow Phenomena, Melbourne, Australia, TSFP-9. Begell House.
[50] Philip, J., Meneveau, C., De Silva, C. M. & Marusic, I.2014Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids26 (1), 015105.
[51] Pope, S. B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[52] Prasad, R. R. & Sreenivasan, K. R.1989Scalar interfaces in digital images of turbulent flows. Exp. Fluids7 (4), 259-264.
[53] Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T. & Kompenhans, J.2018Particle Image Velocimetry: a Practical Guide. Springer.
[54] Van Reeuwijk, M. & Holzner, M.2014The turbulence boundary of a temporal jet. J. Fluid Mech.739, 254-275.
[55] Sciacchitano, A.2019Uncertainty quantification in particle image velocimetry. Meas. Sci. Technol.30 (9), 092001.
[56] Da Silva, C. B., Dos Reis, R. J. N. & Pereira, J. C. F.2011The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech.685, 165-190. · Zbl 1241.76253
[57] Da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J.2014Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech.46, 567-590. · Zbl 1297.76074
[58] Da Silva, C. B. & Dos Reis, R. J. N.2011The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil. Trans. R. Soc. Lond. A369 (1937), 738-753. · Zbl 1219.76028
[59] Da Silva, C. B. & Taveira, R. R.2010The thickness of the turbulent/non-turbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys. Fluids22 (12), 121702.
[60] De Silva, C. M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I.2013Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett.111, 044501.
[61] Silva, T. S., Zecchetto, M. & Da Silva, C. B.2018The scaling of the turbulent/non-turbulent interface at high Reynolds numbers. J. Fluid Mech.843, 156-179. · Zbl 1430.76234
[62] Sreenivasan, K. R. & Meneveau, C.1986The fractal facets of turbulence. J. Fluid Mech.173, 357-386.
[63] Taveira, R. R. & Da Silva, C. B.2014Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets. Phys. Fluids26 (2), 021702.
[64] Thielicke, W. & Stamhuis, E.2014Pivlab-towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. J. Open Res. Software2 (1), 1-10.
[65] Townsend, A. A.1980The Structure of Turbulent Shear Flow. Cambridge University Press. · Zbl 0435.76033
[66] Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T.2014Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet. J. Fluid Mech.758, 754-785.
[67] Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T.2015Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers. Phys. Fluids27 (8), 085109. · Zbl 1349.76145
[68] Watanabe, T., Da Silva, C. B., Nagata, K. & Sakai, Y.2017Geometrical aspects of turbulent/non-turbulent interfaces with and without mean shear. Phys. Fluids29 (8), 085105.
[69] Watanabe, T., Da Silva, C. B., Sakai, Y., Nagata, K. & Hayase, T.2016Lagrangian properties of the entrainment across turbulent/non-turbulent interface layers. Phys. Fluids28 (3), 031701.
[70] Watanabe, T., Zhang, X. & Nagata, K.2018Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids30 (3), 035102.
[71] Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R.2005Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett.95 (17), 174501.
[72] Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R.2009Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech.631, 199-230. · Zbl 1181.76015
[73] Westerweel, J., Hofmann, T., Fukushima, C. & Hunt, J.2002The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp. Fluids33 (6), 873-878.
[74] Wolf, M., Holzner, M., Lüthi, B., Krug, D., Kinzelbach, W. & Tsinober, A.2013Effects of mean shear on the local turbulent entrainment process. J. Fluid Mech.731, 95-116. · Zbl 1294.76168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.