×

‘Fines’ from the collision of liquid rims. (English) Zbl 1460.76061

J. Fluid Mech. 893, Paper No. A16, 31 p. (2020); erratum ibid. 894, Paper No. E1, 1 p. (2020).
Summary: Fines are smaller droplets produced from an auxiliary mechanism besides the formation of the standard drops in a fragmentation process. We report their formation in a controlled experiment which isolates an individual fragmentation protocol: the collision of two rims bordering growing adjacent holes on a liquid sheet. The standard drops come from the capillary breakup of the fused rims. Occasionally, the rims collision is strong enough to trigger a new, splash-like mechanism, producing an expanding lamellae perpendicular to the main sheet, which destabilizes into finer drops. We quantify the threshold condition for the onset of this mechanism first discovered by the second author and the third author [ibid. 714, 361–392 (2013; Zbl 1284.76373)], we document the resulting lamellae dynamics and explain why it affects the mean drop size in the spray, broadening substantially the overall drop size distribution, which we determine. Possible applications of these findings are mentioned.

MSC:

76A20 Thin fluid films

Keywords:

thin films

Citations:

Zbl 1284.76373

References:

[1] Abramowitz, M. & Stegun, I. A.1964Handbook of Mathematical Functions. Dover Publications, Inc. · Zbl 0065.43202
[2] Agbaglah, G. & Deegan, R. D.2014Growth and instability of the liquid rim in the crown splash regime. J. Fluid Mech.752, 485-496.
[3] Antkowiak, A., Bremond, N., Dizès, S. L. & Villermaux, E.2007Short-term dynamics of a density interface following impact. J. Fluid Mech.577, 241-250. · Zbl 1110.76014
[4] Ashgriz, N. & Poo, J. Y.1990Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech.221, 183-204.
[5] Basaran, O. A., Gao, H. & Bhat, P. P.2013Nonstandard inkjets. Annu. Rev. Fluid Mech.45, 85-113. · Zbl 1359.76289
[6] Bayvel, L. & Orzechowski, Z.1993Liquid Atomization. Taylor & Francis.
[7] Birkhoff, G., Macdougall, D. P., Pugh, E. M. & Taylor, G. I.1948Explosives with lined cavities. J. Appl. Phys.19, 563-582.
[8] Blanchard, D. C.1953Giant condensation nuclei from bursting bubbles. Nature172 (4390), 1144-1145.
[9] Bradley, S. G. & Stow, C. D.1978Collisions between liquid drops. Phil. Trans. R. Soc. Lond. A287 (1349), 635-675.
[10] Bremond, N., Clanet, C. & Villermaux, E.2007Atomization of undulating liquid sheets. J. Fluid Mech.585, 421-456. · Zbl 1118.76005
[11] Brenner, M. P., Shi, X. D. & Nagel, S. R.1994Iterated instabilities during droplet fission. Phys. Rev. Lett.73 (25), 3391-3394.
[12] Cointe, R. & Armand, J.-L.1987Hydrodynamic impact analysis of a cylinder. Trans. ASME J. Offshore Mech. Arctic Engng109 (3), 237-243.
[13] Cooker, M. J. & Peregrine, D. H.1995Pressure-impulse theory for liquid impact problems. J. Fluid Mech.297, 193-214. · Zbl 0871.76010
[14] Culick, F. E. C.1960Comments on a ruptured soap film. J. Appl. Phys.31, 1128-1129.
[15] Dombrowski, N. & Fraser, R. P.1954A photographic investigation into the disintegration of liquid sheets. Phil. Trans. R. Soc. Lond. A247, 101-130.
[16] Dombrowski, N. & Johns, W. R.1963The aerodynamic instability and disintegration of viscous liquid sheets. Chem. Engng Sci.18, 203-214.
[17] Eggers, J. & Villermaux, E.2008Physics of liquid jets. Rep. Prog. Phys.71, 36601.
[18] Eisenklam, P.1964On ligament formation from spinning discs and cups. AIChE J.19 (9), 693-694.
[19] Fraser, R. P., Dombrowski, N. & Routley, J. H.1963The filming of liquids by spinning cups. Chem. Engng Sci.18, 323-337.
[20] Fraser, R. P., Eisenklam, P., Dombrowski, N. & Hasson, D.1962Drop formation from rapidly moving liquid sheet. AIChE J.8, 672-680.
[21] Gelderblom, H., Lhuissier, H., Klein, A. L., Bouwhuis, W., Lohse, D., Villermaux, E. & Snoeijer, J. H.2016Drop deformation by laser-pulse impact. J. Fluid Mech.794, 676-699.
[22] Ghabache, E. & Séon, T.2016Size of the top jet drop produced by bubble bursting. Phys. Rev. F1 (5), 051901(R).
[23] Gordillo, J. M., Lhuissier, H. & Villermaux, E.2014On the cusps bordering liquid sheets. J. Fluid Mech.754 (R1), 1-11.
[24] Gordillo, J. M. & Rodríguez-Rodríguez, J.2019Capillary waves control the ejection of bubble bursting jets. J. Fluid Mech.867, 556-571. · Zbl 1430.76452
[25] Hewitt, A. J.2000Spray drift: impact of requirements to protect the environment. Crop Protection19, 623-627.
[26] Hilz, E., Vermeer, A. W. P., Cohen Stuart, M. A. & Leermakers, F. A. M.2012Mechanism of perforation based on spreading properties of emulsified oils. Atomiz. Sprays22 (12), 1053-1075.
[27] Hirst, J. M., Stedman, O. J. & Hogg, W. H.1967Long-distance spore transport: methods of measurement, vertical spore profiles and the detection of immigrant spores. J. Gen. Microbiol.48, 329-355.
[28] Ingold, C. T.1971Fungal Spores: Their Liberation and Dispersal. Clarendon Press-Oxford.
[29] Josserand, C. & Thoroddsen, S. T.2016Drop impact on a solid surface. Annu. Rev. Fluid Mech.48 (1), 365-391. · Zbl 1356.76380
[30] Kooij, S., Astefanei, A., Corthals, G. L. & Bonn, D.2019Size distributions of droplets produced by ultrasonic nebulizers. Sci. Rep.9, 6128.
[31] Kooij, S., Sijs, R., Denn, M. M., Villermaux, E. & Bonn, D.2018What determines the drop size in sprays?Phys. Rev. X8, 031019.
[32] Lafrance, P. & Ritter, R. C.1977Capillary breakup of a liquid jet with a random initial perturbation. Trans. ASME J. Appl. Mech.385-388.
[33] Lamb, H.1932Hydrodynamics, 6th edn. Cambridge University Press. · JFM 58.1298.04
[34] Lefebvre, A. H.1989Atomization and Sprays. Hemisphere.
[35] Lejeune, S. & Gilet, T.2019Drop impact close to the edge of an inclined substrate: liquid sheet formation and breakup. Phys. Rev. F4, 053601.
[36] Lhuissier, H., Sun, C., Prosperetti, A. & Lohse, D.2013Drop fragmentation at impact onto a bath of an immiscible liquid. Phys. Rev. Lett.110, 264503.
[37] Lhuissier, H. & Villermaux, E.2011The destabilization of an initially thick liquid sheet edge. Phys. Fluids23 (9), 091705-091704. · Zbl 1308.76024
[38] Lhuissier, H. & Villermaux, E.2013‘Effervescent’ atomization in two dimensions. J. Fluid Mech.714, 361-392. · Zbl 1284.76373
[39] Mandre, S., Mani, M. & Brenner, M. P.2009Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett.102, 134502. · Zbl 1189.76182
[40] Néel, B. & Villermaux, E.2018The spontaneous puncture of thick liquid films. J. Fluid Mech.838, 192-221. · Zbl 1419.76056
[41] Oliveira, M. & Mckinley, G.2005Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of high extensible flexible polymers. Phys. Fluids17, 071704. · Zbl 1187.76390
[42] Philippi, J., Lagrée, P.-Y. & Antkowiak, A.2016Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech.795, 96-135. · Zbl 1359.76095
[43] Planchette, C., Hinterbichler, H., Liu, M., Bothe, D. & Brenn, G.2017Colliding drops as coalescing and fragmenting liquid springs. J. Fluid Mech.814, 277-300.
[44] Plateau, J.1873Satique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Ghauthier-Villard. · JFM 06.0516.03
[45] Rayleigh, L.1879On the capillary phenomena of jets. Proc. R. Soc. Lond.29, 71-97.
[46] Riboux, G. & Gordillo, J. M.2014Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett.113 (2), 024507.
[47] Riboux, G. & Gordillo, J. M.2015The diameters and velocities of the droplets ejected after splashing. J. Fluid Mech.772, 630-648.
[48] Roisman, I. V.2004Dynamics of inertia dominated binary drop collisions. Phys. Fluids16 (9), 3438-3449. · Zbl 1187.76448
[49] Savart, F.1833Mémoire sur le Choc d’une Veine liquide lancée contre un plan circulaire. Ann. Chim. Phys.54, 55-87.
[50] Sovani, S. D., Sojka, P. E. & Lefebvre, A. H.2001Effervescent atomization. Prog. Energy Combust. Sci.27, 483-521.
[51] Spiel, D. E.1994The number and size of jet drops produced by air bubbles bursting on a fresh water surface. J. Geophys. Res.99 (C4), 10289-10296.
[52] Taylor, G. I.1959The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A253, 313-321. · Zbl 0087.19602
[53] Thoroddsen, S. T.2002The ejecta sheet generated by the impact of a drop. J. Fluid Mech.451, 373-381. · Zbl 1156.76336
[54] Thoroddsen, S. T., Takehara, K. & Etoh, T. G.2012Microsplashing by drop impacts. J. Fluid Mech.706, 560-570. · Zbl 1275.76032
[55] Tjahjadi, M., Stone, H. A. & Ottino, J. M.1992Satellite and subsatellite formation in capillary breakup. J. Fluid Mech.243, 297-317.
[56] Vernay, C., Ramos, L. & Ligoure, C.2015Bursting of dilute emulsion-based liquid sheets driven by a marangoni effect. Phys. Rev. Lett.115, 198302.
[57] Villermaux, E. & Bossa, B.2009Single-drop fragmentation determines size distribution of raindrops. Nat. Phys.5 (9), 697-702.
[58] Villermaux, E. & Bossa, B.2011Drop fragmentation on impact. J. Fluid Mech.668, 412-435. · Zbl 1225.76099
[59] Villermaux, E., Pistre, V. & Lhuissier, H.2013The viscous Savart sheet. J. Fluid Mech.730, 607-625. · Zbl 1291.76116
[60] Vledouts, A., Quinard, J., Vandenberghe, N. & Villermaux, E.2016Explosive fragmentation of liquid shells. J. Fluid Mech.788, 246-273. · Zbl 1381.80007
[61] Wagner, H.1932über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Z. Angew. Math. Mech.12 (4), 193-215. · Zbl 0005.12601
[62] Wang, Y. & Bourouiba, L.2018Unsteady sheet fragmentation: droplet sizes and speeds. J. Fluid Mech.848, 946-967.
[63] Wells, F. W.1955Airborne Contagion and Air Hygiene. Harvard University Press.
[64] Wong, D. C. Y., Simmons, M. J. H., Decent, S. P., Parau, E. I. & King, A. C.2004Break-up dynamics and drop size distributions created from spiralling liquid jets. Intl J. Multiphase Flow30, 499-520. · Zbl 1136.76681
[65] Worthington, A. M.1876On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond.25, 261-272.
[66] Worthington, A. M.1908A Study of Splashes. Longmans, Green & Co.
[67] Xu, L., Barcos, L. & Nagel, S. R.2007Splashing of liquids: interplay of surrounding gas and surface roughness. Phys. Rev. E76, 066311.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.