×

Numerical analysis of an evolutionary variational-hemivariational inequality with application to a dynamic contact problem. (English) Zbl 1460.74070

Summary: In this paper, we consider the numerical solution of an evolutionary variational-hemivariational inequality arising in a dynamic contact problem. The material is assumed to be viscoelastic with short memory. The contact is featured by a normal damped response in the normal direction and by the Tresca friction law in the tangential direction. The linear finite elements are used to discretize the spatial variable. Optimal order error estimates are derived for the discrete velocity and discrete displacement under suitable solution regularity assumptions.

MSC:

74M15 Contact in solid mechanics
74M10 Friction in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
49J40 Variational inequalities
Full Text: DOI

References:

[1] Panagiotopoulos, P. D., Nonconvex energy functions hemivariational inequalities and substationary principles, Acta Mech., 42, 160-183 (1983)
[2] Panagiotopoulos, P. D., Hemivariational Inequalities, Applications in Mechanics and Engineering (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0826.73002
[3] Naniewicz, Z.; Panagiotopoulos, P. D., Mathematical Theory of Hemivariational Inequalities and Applications (1995), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York, Basel, Hong Kong · Zbl 0968.49008
[4] Carl, S.; Le, V. K.; Motreanu, D., Nonsmooth Variational Problems and their Inequalities (2007), Springer · Zbl 1109.35004
[5] Migórski, S.; Ochal, A.; Sofonea, M., (Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26 (2013), Springer: Springer New York) · Zbl 1262.49001
[6] Sofonea, M.; Migórski, S., Variational-Hemivariational Inequalities with Applications (2018), CRC Press: CRC Press Boca Raton, FL · Zbl 1384.49002
[7] Haslinger, J.; Miettinen, M.; Panagiotopoulos, P. D., Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, Dordrecht, London · Zbl 0949.65069
[8] Han, W.; Migórski, S.; Sofonea, M., A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM J. Math. Anal., 46, 3891-3912 (2014) · Zbl 1309.47068
[9] Barboteu, M.; Bartosz, K.; Han, W.; Janiczko, T., Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact, SIAM J. Numer. Anal., 53, 527-550 (2015) · Zbl 1312.65156
[10] Barboteu, M.; Bartosz, K.; Han, W., Numerical analysis of an evolutionary variational-hemivariational inequality with application in contact mechanics, Comput. Methods Appl. Mech. Engrg., 318, 882-897 (2017) · Zbl 1439.65106
[11] Han, W.; Huang, Z.; Wang, C.; Xu, W., Numerical analysis of elliptic hemivariational inequalities for semipermeable media, J. Comput. Math., 37, 543-560 (2019)
[12] Han, W.; Sofonea, M.; Barboteu, M., Numerical analysis of elliptic hemivariational inequalities, SIAM J. Numer. Anal., 55, 640-663 (2017) · Zbl 1362.74033
[13] Han, W.; Sofonea, M.; Danan, D., Numerical analysis of stationary variational-hemivariational inequalities, Numer. Math., 139, 563-592 (2018) · Zbl 1397.65265
[14] Han, W., Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics, Math. Mech. Solids, 23, 279-293 (2018), (special issue on Inequality Problems in Contact Mechanics) · Zbl 1404.74158
[15] Xu, W.; Huang, Z.; Han, W.; Chen, W.; Wang, C., Numerical analysis of history-dependent variational-hemivariational inequalities with applications in contact mechanics, J. Comput. Appl. Math., 351, 364-377 (2019) · Zbl 1458.74139
[16] Cheng, X. L.; Xiao, Q. C.; Migórski, S.; Ochal, A., Error estimate for quasistatic history-dependent contact model, Comput. Math. Appl. (2019) · Zbl 1442.74140
[17] Xu, W.; Huang, Z.; Han, W.; Chen, W.; Wang, C., Numerical analysis of history-dependent hemivariational inequalities and applications to viscoelastic contact problems with normal penetration, Comput. Math. Appl. (2019) · Zbl 1442.65113
[18] Migórski, S.; Zeng, S. D., Rothe method and numerical analysis for history-dependent hemivariational inequalities with applications to contact mechanics, Numer. Algorithms (2019) · Zbl 1433.65192
[19] Clarke, F. H., Optimization and Nonsmooth Analysis (1983), Wiley, Interscience: Wiley, Interscience New York · Zbl 0582.49001
[20] Denkowski, Z.; Migórski, S.; Papageorgiou, N. S., An Introduction to Nonlinear Analysis: Theory (2003), Kluwer Academic/Plenum Publishers: Kluwer Academic/Plenum Publishers Boston, Dordrecht, London, New York · Zbl 1040.46001
[21] Han, W.; Sofonea, M., (Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, vol. 30 (2002), Americal Mathematical Society, Providence, RI-International Press: Americal Mathematical Society, Providence, RI-International Press Somerville, MA) · Zbl 1013.74001
[22] Nečas, J.; Hlaváček, I., Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction (1981), Elsevier: Elsevier Amsterdam · Zbl 0448.73009
[23] Atkinson, K.; Han, W., Theoretical Numerical Analysis: A Functional Analysis Framework (2009), Springer-Verlag: Springer-Verlag New York · Zbl 1181.47078
[24] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North Holland: North Holland Amsterdam · Zbl 0383.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.