×

Optimal exponentials of thickness in Korn’s inequalities for parabolic and elliptic shells. (English) Zbl 1460.74059

Summary: We consider the scaling of the optimal constant in Korn’s first inequality for elliptic and parabolic shells which was first given by Y. Grabovsky and D. Harutyunyan [Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 1, 267–282 (2018; Zbl 1395.74056)] with hints coming from the test functions constructed by P. E. Tovstik and A. L. Smirnov [Asymptotic methods in the buckling theory of elastic shells. River Edge, NJ: World Scientific (2001; Zbl 1066.74500)] on the level of formal asymptotic expansions. Here, we employ the Bochner technique in Remannian geometry to remove the assumption that the middle surface of the shell is given by one single principal coordinate, in particularly, including closed elliptic shells.

MSC:

74K25 Shells
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
53Z05 Applications of differential geometry to physics

References:

[1] Korn, A., Solution gnrale du problme dquilibre dans la thorie de llasticit dans le cas o les erts sont donns la surface, Ann. Fac. Sci. Toulouse, 10, 165-269 (1908) · JFM 39.0853.03 · doi:10.5802/afst.251
[2] Korn, A.: Uber einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Int. Cracovie Akademie Umiejet, Classe des Sci. Math. Nat., 705-724 (1909) · JFM 40.0884.02
[3] Friedrichs, KO, On the boundary-value problems of the theory of elasticity and Korns inequality, Ann. Math., 48, 2, 441-471 (1947) · Zbl 0029.17002 · doi:10.2307/1969180
[4] Kondratiev, VA; Oleinik, OA, Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities, Usp. Mat. Nauk, 43, 5, 55-98 (1988) · Zbl 0661.73001
[5] Kondratiev, VA; Oleinik, OA, On Korns inequalities, C. R. Math. Acad. Sci. Paris Ser. I, 308, 483-487 (1989) · Zbl 0698.35067
[6] Kohn, RV, New integral estimates for deformations in terms of their nonlinear strains, Arch. Ration. Mech. Anal., 78, 2, 131-172 (1982) · Zbl 0491.73023 · doi:10.1007/BF00250837
[7] Payne, LE; Weinberger, HF, On Korns inequality, Arch. Ration. Mech. Anal., 8, 89-98 (1961) · Zbl 0101.17001 · doi:10.1007/BF00277432
[8] Bauer, S.; Neff, P.; Pauly, D.; Starke, G., Some Poincar type inequalities for quadratic matrix fields, Proc. Appl. Math. Mech., 13, 359-360 (2013) · doi:10.1002/pamm.201310175
[9] Conti, S.; Dolzmann, G.; Mller, S., Korns second inequality and geometric rigidity with mixed growth conditions, Calc. Var. Part. Differ. Equ., 50, 437-454 (2014) · Zbl 1295.35369 · doi:10.1007/s00526-013-0641-5
[10] Neff, P.; Pauly, D.; Witsch, K-J, A canonical extension of Korns first inequality to H(Curl) motivated by gradient plasticity with plastic spin, C. R. Math. Acad. Sci. Paris Ser. I, 349, 1251-1254 (2011) · Zbl 1234.35010 · doi:10.1016/j.crma.2011.10.003
[11] Neff, P., Pauly, D., Witsch, K.-J.: A Korns inequality for incompatible tensor fields. In: Proceedings in Applied Mathematics and Mechanics, 6 June (2011)
[12] Friesecke, G.; James, R.; Muller, S., A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., 55, 1461-1506 (2002) · Zbl 1021.74024 · doi:10.1002/cpa.10048
[13] Cioranescu, D.; Oleinik, O.; Tronel, G., On Korns inequalities for frame type structures and junctions, C. R. Acad. Sci. Paris Ser. I Math., 309, 9, 591-596 (1989) · Zbl 0937.35502
[14] Lewicka, M.; Muller, S., On the optimal constants in korns and geometric rigidity estimates, in bounded and unbounded domains, under neumann boundary conditions, Indiana Univ. Math. J., 65, 2, 377-397 (2016) · Zbl 1405.74010 · doi:10.1512/iumj.2016.65.5797
[15] Nazarov, SA, Weighted anisotropic Korns inequality for a junction of a plate and a rod, Sbornik: Math., 195, 4, 553-583 (2004) · Zbl 1080.35158 · doi:10.1070/SM2004v195n04ABEH000815
[16] Nazarov, SA, Korn inequalities for elastic junctions of massive bodies, thin plates, and rods, Russ. Math. Surv., 63, 1, 35 (2008) · Zbl 1155.74027 · doi:10.1070/RM2008v063n01ABEH004501
[17] Paroni, R.; Tomassetti, G., Asymptotically exact Korns constant for thin cylindrical domains, Comptes Rendus Mathematique, 350, 15, 749-752 (2012) · Zbl 1369.35091 · doi:10.1016/j.crma.2012.09.013
[18] Paroni, R.; Tomassetti, G., On Korns constant for thin cylindrical domains, Math. Mech. Solids, 19, 3, 318-333 (2014) · Zbl 1353.74013 · doi:10.1177/1081286512465080
[19] Grabovsky, Y.; Harutyunyan, D., Korn inequalities for shells with zero Gaussian curvature, Ann. Inst. H. Poincar Anal. Non Linaire, 35, 1, 267-282 (2018) · Zbl 1395.74056 · doi:10.1016/j.anihpc.2017.04.004
[20] Grabovsky, Y.; Harutyunyan, D., Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells, SIAM J. Math. Anal., 46, 5, 3277-3295 (2014) · Zbl 1307.74049 · doi:10.1137/130948999
[21] Tovstik, P.E., Smirnov, A.L., Asymptotic methods in the buckling theory of elastic shells, volume 4 of Series on stability, vibration and control of systems. World Scientific, Singapore 2001 · Zbl 1066.74500
[22] Harutyunyan, D., Gaussian curvature as an identifier of shell rigidity, Arch. Ration. Mech. Anal., 226, 2, 743-766 (2017) · Zbl 1374.35400 · doi:10.1007/s00205-017-1143-y
[23] Wu, H.: The Bochner Technique in Differential Geometry, Mathematical Reports, Vol. 3, part 2, Harwood Academic Publishers, London-Paris, (1988) · Zbl 0875.58014
[24] Yao, P.F.: Modeling and control in vibrational and structural dynamics. A differential geometric approach. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton, FL, (2011) · Zbl 1229.74002
[25] Yao, P.F.: Linear Strain Tensors and Optimal Exponential of thickness in Korn’s Inequalities for Hyperbolic Shells, arXiv:1807.11115 [math-ph]
[26] Harutyunyan, D.: On the Korn interpolation and second inequalities for shells with non-constant thickness, arXiv:1709.04572 [math.AP]
[27] Koiter, WT, On the nonlinear theory of thin elastic shells I, Proc. Kon. Ned. Akad. Wetensch. B, 69, 1-17 (1966) · doi:10.1016/S1385-7258(66)50001-4
[28] Harutyunyan, D., New asyptotically sharp Korn and Korn-like inequalities in thin domains, J. Elast., 117, 1, 95-109 (2014) · Zbl 1306.35132 · doi:10.1007/s10659-013-9466-x
[29] Chen, W.; Jost, J., A Riemannian version of Korn’s inequality, Calc. Var. Part. Differ. Equ., 14, 4, 517-530 (2002) · Zbl 1006.74011 · doi:10.1007/s005260100113
[30] Yao, PF, Linear Strain Tensors on Hyperbolic Surfaces and Asymptotic Theories for Thin Shells, SIAM J. Math. Anal., 51, 2, 1387-1435 (2019) · Zbl 1411.74039 · doi:10.1137/18M118181X
[31] Lee, J.M.: Introduction to smooth manifolds. Second edition. Graduate Texts in Mathematics, 218. Springer, New York, (2013) · Zbl 1258.53002
[32] Ciarlet, PG; Lods, V., On the ellipticity of linear membrane shell equations, J. Math. Pures Appl., 75, 2, 107-124 (1996) · Zbl 0870.73037
[33] Lods, V.; Mardare, C., The space of inextensional displacements for a partially clamped linearly elastic shell with an elliptic middle surface, J. Elast., 51, 2, 127-144 (1998) · Zbl 0921.73206 · doi:10.1023/A:1007457103654
[34] Spivak, M.: A comprehensive introduction to differential geometry. Vols. III and IV. Second edition. Publish or Perish, Inc., Wilmington, Del., (1979). xii+466 pp. ISBN: 0-914098-83-7 · Zbl 0439.53004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.