×

Detecting exotic spheres in low dimensions using coker \(J\). (English) Zbl 1460.55017

Let \(\Theta_n\) be the \(n\)th homotopy sphere cobordism group under the connected sum operation in the sense of M. A. Kervaire and J. W. Milnor [Ann. Math. (2) 77, 504–537 (1963; Zbl 0115.40505)], and let \[ J : \pi_n SO \rightarrow \pi_n^s \] be the \(J\)-homomorphism, where \(\pi_*^s\) is the stable homotopy groups of spheres. Kervaire and Milnor proved that there is an isomorphism \[ \Theta_{4k} \cong\mathrm{coker} J_{4k} \] and there exist exact sequences \[ 0 \longrightarrow \Theta_{2k+1}^{bp} \longrightarrow \Theta_{2k+1} \longrightarrow \mathrm{coker} J_{2k+1} \longrightarrow 0 \] and \[ 0 \longrightarrow \Theta_{4k+2}\longrightarrow \mathrm{coker}~J_{4k+2} \overset{\Phi_K}\longrightarrow \mathbb{Z}/2 \longrightarrow\Theta_{4k+1}^{bp} \longrightarrow 0,\] where \(\Theta_{n}^{bp}\) is the subgroup of the group \(\Theta_n\) of homotopy \(n\)-spheres which bound a parallelizable manifold and \(\Phi_K\) is the Kervaire invariant; see also [J. Milnor, Notices Am. Math. Soc. 58, No. 6, 804–809 (2011; Zbl 1225.01040)]. W. Browder showed in [Ann. Math. (2) 90, 157–186 (1969; Zbl 0198.28501)] that the Kervaire invariant is zero for dimensions \(\neq 2^i -2\). For dimension \(2^i -2\), there is a framed manifold with Kervaire invariant one if and only if in the Adams spectral sequence for the stable homotopy groups of spheres the element \(h_i^2 \in E^2\) survives to \(E^\infty\). The work of M. A. Hill et al. [Ann. Math. (2) 184, No. 1, 1–262 (2016; Zbl 1366.55007)] is a remarkable paper in homotopy theory on the Kervaire invariant one problem except for in dimension \(126\). G. Wang and Z. Xu showed in [Ann. Math. (2) 186, No. 2, 501–580 (2017; Zbl 1376.55013)] that the \(61\)-stem in the stable homotopy groups of spheres is trivial.
In this beautiful paper in algebraic topology under review, the authors construct non-trivial elements of coker \(J\) in low degrees using Toda brackets of elements in the stable homotopy groups of spheres and chromatic homotopy theory to produce non-trivial \(v_2\)-periodic families. By using a modified Adams spectral sequence for \(M(8, v_1^8)\) and the computation of the \(E_1\)-page of the algebraic tmf resolution, they show that for every even \(k\) less than \(140\), coker\(J_k\) has a non-trivial element of Kervaire invariant \(0\), except for \(k = 2,4,6,12\) and \(56\). The remarkable results of this paper along with the works of Kervaire-Milnor, Hill-Hopkins-Ravenel and Wang-Xu assert that the only dimensions \(< 140\) for which \(S^n\) has a unique differentiable structure are \(1,2,3,5,6,12,56,61\) and perhaps \(4\). They also construct some non-trivial elements of \((\mathrm{coker}J_{4k})_{(p)}\) and \((\mathrm{coker}J_{8k-2})_{(p)}\) with Kervaire invariant \(0\) below dimension \(200\), where \(p = 2,3\) and \(5\).

MSC:

55Q45 Stable homotopy of spheres
57R55 Differentiable structures in differential topology
57R60 Homotopy spheres, Poincaré conjecture
55Q51 \(v_n\)-periodicity
55N34 Elliptic cohomology
55T15 Adams spectral sequences

References:

[1] J. F.Adams, ‘On the non‐existence of elements of Hopf invariant one’, Ann. of Math. (2)72 (1960) 20-104. MR 0141119. · Zbl 0096.17404
[2] J. F.Adams, ‘On the groups \(J ( X )\). IV’, Topology5 (1966) 21-71. MR 0198470. · Zbl 0145.19902
[3] M.Behrens, ‘A modular description of the \(K ( 2 )\)‐local sphere at the prime 3’, Topology45 (2006) 343-402. MR 2193339. · Zbl 1099.55002
[4] M.Behrens, ‘The Goodwillie tower and the EHP sequence’, Mem. Amer. Math. Soc.218 (2012) xii+90. MR 2976788. · Zbl 1330.55012
[5] M.Behrens, ‘Topological modular and automorphic forms’, Handbook of Homotopy Theory, 2019, to appear.
[6] M.Behrens, M.Hill, M. J.Hopkins and M.Mahowald, ‘On the existence of a \(v_2^{32}\)‐self map on \(M ( 1 , 4 )\) at the prime 2’, Homology Homotopy Appl.10 (2008) 45-84. MR 2475617. · Zbl 1162.55010
[7] M.Behrens and K.Ormsby, ‘On the homotopy of \(Q ( 3 )\) and \(Q ( 5 )\) at the prime 2’, Algebr. Geom. Topol.16 (2016) 2459-2534. MR 3572338. · Zbl 1366.55009
[8] M.Behrens, K.Ormsby, N.Stapleton and V.Stojanoska, ‘On the ring of cooperations for 2‐primary connective topological modular forms’, J. Topol.12 (2019) 577-657. · Zbl 1444.55004
[9] M.Behrens and S.Pemmaraju, ‘On the existence of the self map \(v_2^9\) on the Smith-Toda complex \(V ( 1 )\) at the prime 3’, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic \(k\)‐theory, Contemporary Mathematics 346 (American Mathematical Society, Providence, RI, 2004) 9-49. MR 2066495. · Zbl 1081.55011
[10] A. K.Bousfield, ‘The localization of spectra with respect to homology’, Topology18 (1979) 257-281. MR 551009. · Zbl 0417.55007
[11] W.Browder, ‘The Kervaire invariant of framed manifolds and its generalization’, Ann. of Math. (2)90 (1969) 157-186. MR 0251736. · Zbl 0198.28501
[12] E. H.Brown, Jr, and S.Gitler, ‘A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra’, Topology12 (1973) 283-295. MR 0391071. · Zbl 0266.55012
[13] R. R.Bruner, The cohomology of the mod 2 Steenrod Algebra: a computer calculation, www.math.wayne.edu/ rrb/papers/cohom.pdf.
[14] R. R.Bruner, ‘\( \operatorname{Ext}\) in the nineties’, Algebraic topology (oaxtepec, 1991), Contemporary Mathematics 146 (American Mathematical Society, Providence, RI, 1993) 71-90. MR 1224908. · Zbl 0788.55001
[15] D. M.Davis and M.Mahowald, ‘The image of the stable \(J\)‐homomorphism’, Topology28 (1989) 39-58. MR 991098. · Zbl 0702.55013
[16] P.Deligne, ‘Courbes elliptiques: formulaire (d’après J. Tate)’, Modular functions of one variable IV, Lecture Notes in Mathematics 476 (Springer, Berlin, 1975) 53-73. MR 0387292. · Zbl 1214.11075
[17] P.Deligne and M.Rapoport, Les schémas de modules de courbes elliptiques, Lecture Notes in Mathematics 349 (Springer, Berlin, 1973) 143-316. MR 0337993. · Zbl 0281.14010
[18] E. S.Devinatz, M. J.Hopkins and J. H.Smith, ‘Nilpotence and stable homotopy theory. I’, Ann. of Math. (2)128 (1988) 207-241. MR 960945. · Zbl 0673.55008
[19] C. L.Douglas, J.Francis, A. G.Henriques and M. A.Hill (eds), Topological modular forms, Mathematical Surveys and Monographs 201 (American Mathematical Society, Providence, RI, 2014). MR 3223024.
[20] B.Gheorghe, G.Wang and Z.Xu, ‘The special fiber of the motivic deformation of the stable homotopy category is algebraic’, Preprint, 2018, arXiv:1809.09290.
[21] P. G.Goerss, J. D. S.Jones and M. E.Mahowald, ‘Some generalized Brown-Gitler spectra’, Trans. Amer. Math. Soc.294 (1986) 113-132. MR 819938. · Zbl 0597.55006
[22] M. A.Hill, M. J.Hopkins and D. C.Ravenel, ‘On the nonexistence of elements of Kervaire invariant one’, Ann. of Math. (2)184 (2016) 1-262. MR 3505179. · Zbl 1366.55007
[23] M. J.Hopkins and D. C.Ravenel, ‘Suspension spectra are harmonic’, Bol. Soc. Mat. Mexicana (2)37 (1992) 271-279, Papers in honor of José Adem (Spanish). MR 1317578. · Zbl 0838.55010
[24] M. J.Hopkins and J. H.Smith, ‘Nilpotence and stable homotopy theory. II’, Ann. of Math. (2)148 (1998) 1-49. MR 1652975. · Zbl 0924.55010
[25] D.Isaksen, ‘Stable stems’, Preprint, 2014, arXiv:1407.8418. · Zbl 1454.55001
[26] D.Isaksen, ‘Classical and motivic Adams charts’, Preprint, 2016, arXiv:1401.4983.
[27] M. A.Kervaire and J. W.Milnor, ‘Groups of homotopy spheres. I’, Ann. of Math. (2)77 (1963) 504-537. MR 0148075. · Zbl 0115.40505
[28] J.Konter, The homotopy groups of the spectrum Tmf, Preprint, 2012, arXiv:1212.3656.
[29] M.Mahowald, ‘The order of the image of the \(J\)‐homomorphisms’, Bull. Amer. Math. Soc.76 (1970) 1310-1313. MR 0270369. · Zbl 0212.28401
[30] M.Mahowald, ‘A new infinite family in \({}_2 \pi_\ast{}^s\)’, Topology16 (1977) 249-256. MR 0445498. · Zbl 0357.55020
[31] M.Mahowald, ‘The construction of small ring spectra’, Geometric applications of homotopy theory (Proc. Conf., Evanston, IL, 1977), II, Lecture Notes in Mathematics 658 (Springer, Berlin, 1978) 234-239. MR 513579. · Zbl 0383.55014
[32] M.Mahowald, ‘\( b \operatorname{o} \)‐resolutions’, Pacific J. Math.92 (1981) 365-383. MR 618072. · Zbl 0476.55021
[33] M.Mahowald, D.Ravenel and P.Shick, ‘The triple loop space approach to the telescope conjecture’, Homotopy methods in algebraic topology (Boulder, CO, 1999), Contemporary Mathematics 271 (American Mathematical Society, Providence, RI, 2001) 217-284. MR 1831355. · Zbl 0984.55009
[34] M.Mahowald and C.Rezk, ‘Topological modular forms of level 3’, Pure Appl. Math. Q.5 (2009) 853-872, Special issue: in honor of Friedrich Hirzebruch. Part 1. MR 2508904. · Zbl 1192.55006
[35] A.Mathew, ‘The homology of tmf’, Homology Homotopy Appl.18 (2016) 1-29. MR 3515195. · Zbl 1357.55002
[36] H.Miller, ‘Finite localizations’, Bol. Soc. Mat. Mexicana (2)37 (1992) 383-389, Papers in honor of José Adem (Spanish). MR 1317588. · Zbl 0852.55015
[37] H. R.Miller, ‘On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space’, J. Pure Appl. Algebra20 (1981) 287-312. MR 604321. · Zbl 0459.55012
[38] H. R.Miller, D. C.Ravenel and W. S.Wilson, ‘Periodic phenomena in the Adams-Novikov spectral sequence’, Ann. of Math. (2)106 (1977) 469-516. MR 0458423. · Zbl 0374.55022
[39] J.Milnor, ‘Differential topology forty‐six years later’, Notices Amer. Math. Soc.58 (2011) 804-809. MR 2839925. · Zbl 1225.01040
[40] O.Nakamura, ‘Some differentials in the \(\operatorname{mod} 3\) Adams spectral sequence’, Bull. Sci. Engrg. Div. Univ. Ryukyus Math. Natur. Sci. (1975) 1-25. MR 0385852. · Zbl 0368.55017
[41] C.Nassau, www.nullhomotopie.de.
[42] G.Perelman, ‘The entropy formula for the Ricci flow and its geometric applications’, Preprint, 2002, arXiv:math.DG/0211159. · Zbl 1130.53001
[43] G.Perelman, ‘Finite extinction time for the solutions to the Ricci flow on certain three‐manifolds’, Preprint, 2003, arXiv:math.DG/0307245. · Zbl 1130.53003
[44] G.Perelman, ‘Ricci flow with surgery on three‐manifolds’, Preprint, 2003, arXiv:math.DG/0303109. · Zbl 1130.53002
[45] D.Quillen, ‘On the formal group laws of unoriented and complex cobordism theory’, Bull. Amer. Math. Soc.75 (1969) 1293-1298. MR 0253350. · Zbl 0199.26705
[46] D. C.Ravenel, ‘Localization with respect to certain periodic homology theories’, Amer. J. Math.106 (1984) 351-414. MR 737778. · Zbl 0586.55003
[47] D. C.Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121 (Academic Press, Orlando, FL, 1986). MR 860042. · Zbl 0608.55001
[48] D. C.Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies 128 (Princeton University Press, Princeton, NJ, 1992), Appendix C by Jeff Smith. MR 1192553. · Zbl 0774.55001
[49] C.Rezk, ‘Supplementary notes for Math 512, lecture notes’, 2007, https://faculty.math.illinois.edu/ rezk/512‐spr2001‐notes.pdf.
[50] S.Smale, ‘On the structure of manifolds’, Amer. J. Math.84 (1962) 387-399. MR 0153022. · Zbl 0109.41103
[51] L.Smith, ‘On realizing complex bordism modules. Applications to the stable homotopy of spheres’, Amer. J. Math.92 (1970) 793-856. MR 0275429. · Zbl 0218.55023
[52] M.Tangora, ‘Some homotopy groups mod 3’, Conference on homotopy theory (Evanston, IL, 1974), Notas de Matematica Simpos. 1 (Sociedad Matemática Mexicana, México, 1975) 227-245. MR 761731. · Zbl 0334.55014
[53] H.Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies 49 (Princeton University Press, Princeton, NJ, 1962). MR 0143217. · Zbl 0101.40703
[54] G.Wang and Z.Xu, ‘The triviality of the 61‐stem in the stable homotopy groups of spheres’, Ann. of Math. (2)186 (2017) 501-580. MR 3702672. · Zbl 1376.55013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.