×

Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps. (English) Zbl 1460.34100

Summary: By using stochastic analysis, fractional analysis, compact semigroups and the Schauder fixed-point theorem, we discuss the approximate boundary controllability of a nonlocal Hilfer fractional stochastic differential system with fractional Brownian motion and a Poisson jump. In addition, we establish the sufficient conditions for exact null controllability for the same problem. Finally, an example is given to illustrate the results obtained.

MSC:

34K50 Stochastic functional-differential equations
93B05 Controllability
60G22 Fractional processes, including fractional Brownian motion
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
93E03 Stochastic systems in control theory (general)
93C10 Nonlinear systems in control theory

References:

[1] Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, 422-473 (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[2] Comte, F., Renault, E.: Long memory continuous time models. J. Econom. 73, 101-149 (1996) · Zbl 0856.62104 · doi:10.1016/0304-4076(95)01735-6
[3] Simonsen, I.: Measuring anti-correlations in the nordic electricity spot market by wavelets. Physica A 322, 597-606 (2003) · Zbl 1017.91026 · doi:10.1016/S0378-4371(02)01938-6
[4] Boudrahem, S., Rougier, P.R.: Relation between postural control assessment with eyes open and centre of pressure visual feed back effects in healthy individuals. Exp. Brain Res. 195, 145-152 (2009) · doi:10.1007/s00221-009-1761-1
[5] Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202, 277-305 (2003) · Zbl 1027.60060 · doi:10.1016/S0022-1236(02)00065-4
[6] Ferrante, M., Rovira, C.: Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter \(H>1/2H > 1/2\). Bernoulli 12, 85-100 (2006) · Zbl 1102.60054
[7] Arthi, G., Park, J.H., Jung, H.Y.: Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion. Commun. Nonlinear Sci. Numer. Simul. 32, 145-157 (2016) · Zbl 1510.60045 · doi:10.1016/j.cnsns.2015.08.014
[8] Diop, M.A., Ezzinbi, K., Mbaye, M.M.: Existence and global attractiveness of a pseudo almost periodic solution in p-th mean sense for stochastic evolution equation driven by a fractional Brownian motion. Stochastics 87, 1061-1093 (2015) · Zbl 1337.60137 · doi:10.1080/17442508.2015.1026345
[9] Boudaoui, A., Caraballo, T., Ouahab, A.: Impulsive neutral functional differential equations driven by a fractional Brownian motion with unbounded delay. Appl. Anal. 95, 2039-2062 (2016) · Zbl 1356.34079 · doi:10.1080/00036811.2015.1086756
[10] Tamilalagan, P., Balasubramaniam, P.: Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion. Appl. Math. Comput. 305, 299-307 (2017) · Zbl 1367.93098
[11] Boufoussi, B., Hajji, S.: Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Stat. Probab. Lett. 82, 1549-1558 (2012) · Zbl 1248.60069 · doi:10.1016/j.spl.2012.04.013
[12] Ren, Y., Hou, T., Sakthivel, R.: Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay. Front. Math. China 10, 351-365 (2015) · Zbl 1328.60140 · doi:10.1007/s11464-015-0392-z
[13] Sathya, R., Balachandran, K.: Controllability of Sobolev-type neutral stochastic mixed integrodifferential systems. Eur. J. Math. Sci. 1, 68-87 (2012)
[14] Karthikeyan, S., Balachandran, K., Sathya, M.: Controllability of nonlinear stochastic systems with multiple time-varying delays in control. Int. J. Appl. Math. Comput. Sci. 25, 207-215 (2015) · Zbl 1322.93020 · doi:10.1515/amcs-2015-0015
[15] Ahmed, H.M.: Controllability of impulsive neutral stochastic differential equations with fractional Brownian motion. IMA J. Math. Control Inf. 32, 781-794 (2015) · Zbl 1328.93056
[16] Dauer, J.P., Balasubramaniam, P.: Null controllability of semilinear integrodifferential systems in Banach spaces. Appl. Math. Lett. 10, 117-123 (1997) · Zbl 0892.93011 · doi:10.1016/S0893-9659(97)00114-6
[17] Dauer, J.P., Mahmudov, N.I.: Exact null controllability of semilinear integrodifferential systems in Hilbert spaces. J. Math. Anal. Appl. 299, 322-332 (2010) · Zbl 1061.93056 · doi:10.1016/j.jmaa.2004.01.050
[18] Fu, X., Zhang, Y.: Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions. Acta Math. Sci. Ser. B 33, 747-757 (2013) · Zbl 1299.34255 · doi:10.1016/S0252-9602(13)60035-1
[19] Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S.M.: Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 225, 3498-3508 (2013) · Zbl 1344.93019 · doi:10.1016/j.cnsns.2013.05.015
[20] Ahmed, H.M.: Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space. Adv. Differ. Equ. 2014, 113 (2014) · Zbl 1343.60080 · doi:10.1186/1687-1847-2014-113
[21] Debbouche, A., Antonov, V.: Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces. Chaos Solitons Fractals 243, 140-148 (2017) · Zbl 1374.93048 · doi:10.1016/j.chaos.2017.03.023
[22] Lagnese, J.: Boundary value control of a class of hyperbolic equations in a general region. SIAM J. Control Optim. 15, 973-983 (1977) · Zbl 0375.93029 · doi:10.1137/0315062
[23] Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer, New York (1972) · Zbl 0227.35001
[24] Barbu, V.: Boundary control problems with convex cost criterion. SIAM J. Control Optim. 18, 227-248 (1980) · Zbl 0428.49015 · doi:10.1137/0318016
[25] Balachandran, K., Anandhi, E.R.: Boundary controllability of delay integrodifferential systems in Banach spaces. J. Korean Soc. Ind. Appl. Math. 4, 67-75 (2000)
[26] Balachandran, K., Anandhi, E.R.: Boundary controllability of integrodifferential systems in Banach spaces. Proc. Indian Acad. Sci. Math. Sci. 111, 127-135 (2001) · Zbl 0982.93017 · doi:10.1007/BF02829544
[27] Ahmed, H.M.: Boundary controllability of nonlinear fractional integro-differential systems. Adv. Differ. Equ. 2010, Article ID 279493 (2010) · Zbl 1184.93012 · doi:10.1186/1687-1847-2010-279493
[28] Gu, Q., Li, T.: Exact boundary controllability of nodal profile for unsteady flows on a tree-like network of open canals. J. Math. Pures Appl. 99, 86-105 (2013) · Zbl 1264.35261 · doi:10.1016/j.matpur.2012.06.004
[29] Palanisamy, M., Chinnathambi, R.: Approximate boundary controllability of Sobolev-type stochastic differential systems. J. Egypt. Math. Soc. 22, 201-208 (2014) · Zbl 1296.93026 · doi:10.1016/j.joems.2013.07.005
[30] Lizzy, R.M., Balachandran, K.: Boundary controllability of nonlinear stochastic fractional system in Hilbert space. Int. J. Appl. Math. Comput. Sci. 28, 123-133 (2018) · Zbl 1396.93023 · doi:10.2478/amcs-2018-0009
[31] Muthukumar, P., Thiagu, K.: Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order 1<q<\(21 < q < 2\) with infinite delay and Poisson jumps. J. Dyn. Control Syst. 23, 213-235 (2017) · Zbl 1370.34136 · doi:10.1007/s10883-015-9309-0
[32] Rihan, F.A., Rajivganthi, C., Muthukumar, P.: Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control. Discrete Dyn. Nat. Soc. 2017, Article ID 5394528 (2017) · Zbl 1372.34123 · doi:10.1155/2017/5394528
[33] Chadha, A., Bora, S.N.: Approximate controllability of impulsive neutral stochastic differential equations driven by Poisson jumps. J. Dyn. Control Syst. 24, 101-128 (2018) · Zbl 1384.34083 · doi:10.1007/s10883-016-9348-1
[34] Ahmed, H.M., Wang, J.: Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps. Bull. Iran. Math. Soc. 44, 673-690 (2018) · Zbl 1409.34005 · doi:10.1007/s41980-018-0043-8
[35] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[36] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/3779
[37] Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64, 1616-1626 (2012) · Zbl 1268.34013 · doi:10.1016/j.camwa.2012.01.009
[38] Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344-354 (2015) · Zbl 1338.34014
[39] Curtain, R.F., Zwart, H.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer, New York (1995) · Zbl 0839.93001 · doi:10.1007/978-1-4612-4224-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.