×

Epidemic spreading with long-range infections and incubation times. (English) Zbl 1459.92108

Summary: The non-equilibrium phase transition in models for epidemic spreading with long-range infections in combination with incubation times is investigated by field-theoretical and numerical methods. In this class of models the infection is assumed to spread isotropically over long distances \(r\) whose probability distribution decays algebraically as \(P(r)\sim r^{-d-\sigma}\), where \(d\) is the spatial dimension. Moreover, a freshly infected individual can infect other individuals only after a certain incubation time, modelled here as a waiting time \(\Delta t\), which is distributed probabilistically as \(P(\Delta t)\sim(\Delta t)^{-1-\kappa}\). Tuning the balance between spreading and spontaneous recovery one observes a continuous phase transition from a fluctuating active phase into an absorbing phase, where the infection becomes extinct. Depending on the parameters \(\sigma\) and \(\kappa\) this transition between spreading and extinction is characterized by continuously varying critical exponents, extending from a mean field regime to a phase described by the universality class of directed percolation. Specifying the phase diagram in terms of \(\sigma\) and \(\kappa\) we compute the critical exponents in the vicinity of the upper critical dimension \(d_c = \sigma(3-\kappa^{-1})\) by a field-theoretic renormalization group calculation and verify the results in one spatial dimension by extensive numerical simulations.

MSC:

92D30 Epidemiology

References:

[1] Bailey N J T 1975 The Mathematical Theory of Infectious Diseases (New York: Hafner) · Zbl 0334.92024
[2] Mollison D 1977 Spatial contact models for ecological and epidemic spread J. R. Stat. Soc. B 39 283 · Zbl 0374.60110 · doi:10.1111/j.2517-6161.1977.tb01627.x
[3] Anderson R M and May R M 1991 Infections Diseases of Humans: Dynamics and Control (Oxford: Oxford University Press)
[4] Daley D J and Gani J 1999 Epidemic Modeling: an Introduction (Cambridge: Cambridge University Press) · Zbl 0922.92022 · doi:10.1017/CBO9780511608834
[5] Andersson H and Britton T 2000 Stochastic epidemics in dynamic populations: quasi-stationarity and extinction J. Math. Biol.41 559 · Zbl 1002.92018 · doi:10.1007/s002850000060
[6] Marro J and Dickman R 1999 Nonequilibrium Phase Transitions in Lattice Models (Cambridge: Cambridge University Press) · Zbl 0931.70002 · doi:10.1017/CBO9780511524288
[7] Ódor G 2004 Universality classes in nonequilibrium lattice systems Rev. Mod. Phys.76 663 [cond-mat/0205644v7] · Zbl 1205.82102 · doi:10.1103/RevModPhys.76.663
[8] Lübeck S 2004 Universal scaling behaviour of non-equilibrium phase transitions Int. J. Mod. Phys. B 18 3977 · Zbl 1111.82040 · doi:10.1142/S0217979204027748
[9] Kinzel W 1985 Phase transitions of cellular automata Z. Phys. B 58 229 · Zbl 1174.82316 · doi:10.1007/BF01309255
[10] Hinrichsen H 2000 Non-equilibrium critical phenomena and phase transitions into absorbing states Adv. Phys.49 815 [cond-mat/0001070] · doi:10.1080/00018730050198152
[11] Moshe M 1978 Recent developments in Reggeon field theory Phys. Rep. C 37 255 · doi:10.1016/0370-1573(78)90098-4
[12] Grassberger P and Sundermeyer K 1978 Reggeon field theory and Markov processes Phys. Lett. B 77 220 · doi:10.1016/0370-2693(78)90626-3
[13] Cardy J L and Sugar R L 1980 Directed percolation and Reggeon field theory J. Phys. A: Math. Gen.13 L423
[14] Janssen H K 1981 On the non-equilibrium phase transition in reaction-diffusion systems with an absorbing stationary state Z. Phys. B 42 151 · doi:10.1007/BF01319549
[15] Grassberger P 1982 On phase transitions in Schlögel’s second model Z. Phys. B 47 365 · doi:10.1007/BF01313803
[16] Bouchaud J P and Georges A 1990 Anomalous diffusion in disordered media-Statistical mechanics, models, and physical applications Phys. Rep.195 127 · doi:10.1016/0370-1573(90)90099-N
[17] Fogedby H C 1994 Langevin equations for continuous Lévy flights Phys. Rev. E 50 1657 · doi:10.1103/PhysRevE.50.1657
[18] Saichev A I and Zaslavsky G M 1997 Fractional kinetic equations: solutions and applications Chaos7 753 · Zbl 0933.37029 · doi:10.1063/1.166272
[19] Brockmann D and Sokolov I M 2002 Lévy flights in external force fields: from models to equations Chem. Phys.284 409 · doi:10.1016/S0301-0104(02)00671-7
[20] Grassberger P 1986 Fractals in Physics ed L Pietronero and E Tosatti (Amsterdam: North-Holland)
[21] Marques M C and Ferreira A L 1994 Critical behaviour of a long-range non-equilibrium system J. Phys. A: Math. Gen.27 3389
[22] Albano E V 1996 Branching annihilating Lévy flights: irreversible phase transitions with long-range exchanges Europhys. Lett.34 97 · doi:10.1209/epl/i1996-00422-6
[23] Janssen H K, Oerding K, van Wijland F and Hilhorst H J 1999 Lévy-flight spreading of epidemic processes leading to percolation clusters Eur. Phys. J. B 7 137 · doi:10.1007/s100510050596
[24] Hinrichsen H and Howard M 1999 A model for anomalous directed percolation Eur. Phys. J. B 7 635 · doi:10.1007/s100510050656
[25] Brockmann D and Geisel T 2003 Lévy flights in inhomogeneous media Phys. Rev. Lett.90 170601 · Zbl 1267.82097 · doi:10.1103/PhysRevLett.90.170601
[26] Jiménez-Dalmaroni A and Cardy J 2005 in preparation
[27] van Wijland F, Oerding K and Hilhorst H J 1998 Wilson renormalization of a reaction-diffusion process Physica A 251 179 · doi:10.1016/S0378-4371(97)00603-1
[28] Grassberger P and de la Torre A 1979 Reggeon field theory (Schlögl’s first model) on a lattice Monte Carlo calculations of critical behaviour Ann. Phys., NY122 373 · doi:10.1016/0003-4916(79)90207-0
[29] Brockmann D, Hufnagel L and Geisel T Human dispersal on geographical scales Preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.