×

Statistical theory of photon gas in plasma. (English) Zbl 1459.82306

Summary: The thermodynamical properties of the photon-plasma system have been studied using statistical physics approach. Photons develop an effective mass in the medium thus – as a result of the finite chemical potential – a photon Bose-Einstein condensation can be achieved by adjusting one of the relevant parameters (temperature, photon density and plasma density) to criticality. Due to the presence of the plasma, Planck’s law of blackbody radiation is also modified with the appearance of a gap below the plasma frequency where a condensation peak of coherent radiation arises for the critical system. This is in accordance with recent optical microcavity experiments which are aiming to develop such photon condensate based coherent light sources. The present study is also expected to have applications in other fields of physics such as astronomy and plasma physics.

MSC:

82D10 Statistical mechanics of plasmas

References:

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science269 198-201 · doi:10.1126/science.269.5221.198
[2] Davis K B, Mewes M-O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett.75 3969 · doi:10.1103/PhysRevLett.75.3969
[3] Bose S N 1924 Z. Phys.26 178-81 · JFM 51.0732.04 · doi:10.1007/BF01327326
[4] Einstein A 1925 Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse pp 3-14
[5] Anderson P W 1963 Phys. Rev.130 439 · Zbl 0108.42703 · doi:10.1103/PhysRev.130.439
[6] Bergou J and Varró S 1981 J. Phys. A: Math. Gen.14 1469-82 · doi:10.1088/0305-4470/14/6/023
[7] Ben-Aryeh Y and Mann A 1985 Phys. Rev. Lett.54 1020 · doi:10.1103/PhysRevLett.54.1020
[8] Mendonca J T, Martins A M and Guerreiro A 2000 Phys. Rev. E 62 2989 · doi:10.1103/PhysRevE.62.2989
[9] Mati P 2017 Phys. Rev. A 95 053852 · doi:10.1103/PhysRevA.95.053852
[10] Higgs P W 1964 Phys. Rev. Lett.13 508-9 · doi:10.1103/PhysRevLett.13.508
[11] Englert F and Brout R 1964 Phys. Rev. Lett.13 321-3 · doi:10.1103/PhysRevLett.13.321
[12] Guralnik G S, Hagen C R and Kibble T W B 1964 Phys. Rev. Lett.13 585-7 · doi:10.1103/PhysRevLett.13.585
[13] Weinberg S 1967 Phys. Rev. Lett.19 1264 · doi:10.1103/PhysRevLett.19.1264
[14] Salam A 1969 Elementary Particle Theory ed N Svartholm (Stockholm: Almqvist and Wiksells) p 367
[15] Kompaneets A S 1956 J. Exp. Theor. Phys.31 876
[16] Zel’dovich Y B and Levich E V 1969 J. Exp. Theor. Phys.28 1287
[17] Caflisch R E and Levermore C D 1986 Phys. Fluids29 748 · doi:10.1063/1.865928
[18] Tsintsadze L N, Callebaut D K and Tsintsadze N L 1996 Plasma Phys.55 407-13 · doi:10.1017/S002237780001895X
[19] Tsintsadze L N 2004 Plasma Phys.11 855 · doi:10.1063/1.1638380
[20] Mendonca J T and Tercas H 2017 Phys. Rev. A 95 063611 · doi:10.1103/PhysRevA.95.063611
[21] Chiao R Y and Boyce J 1999 Phys. Rev. A 60 4114 · doi:10.1103/PhysRevA.60.4114
[22] Klaers J, Vewinger F and Weitz M 2010 Nat. Phys.6 512-5 · doi:10.1038/nphys1680
[23] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature468 545 · doi:10.1038/nature09567
[24] Kruchkov A and Slyusarenko Y 2013 Phys. Rev. A 88 013615 · doi:10.1103/PhysRevA.88.013615
[25] Kruchkov A 2014 Phys. Rev. A 89 033862 · doi:10.1103/PhysRevA.89.033862
[26] Kruchkov A J 2016 Phys. Rev. A 93 043817 · doi:10.1103/PhysRevA.93.043817
[27] Boichenko N and Slyusarenko Y 2015 Condens. Matter Phys.18 43002 · doi:10.5488/CMP.18.43002
[28] Nyman R A and Walker B T 2018 Journal of Modern Opticsvol 65 pp 754-66 · doi:10.1080/09500340.2017.1404655
[29] Walker B T, Flatten L C, Hesten H J, Mintert F, Hunger D, Trichet A A P, Smith J M and Nyman R A 2018 Nat. Phys.14 1173-7 · doi:10.1038/s41567-018-0270-1
[30] Huang K 2001 Introduction to Statistical Physics (New York: Taylor and Francis) · Zbl 1137.82300
[31] London F 1938 Nature141 643-4 · doi:10.1038/141643a0
[32] Landsberg P T and Dunning-Davies J 1965 Phys. Rev.138 A1049 · Zbl 0127.21203 · doi:10.1103/PhysRev.138.A1049
[33] Beckmann R, Karsch F and Miller D E 1982 Phys. Rev. A 25 561 · doi:10.1103/PhysRevA.25.561
[34] Haber H E and Weldon H A 1982 J. Math. Phys.23 1852 · doi:10.1063/1.525239
[35] Bloch F and Nordsieck A 1937 Phys. Rev.52 54 · JFM 63.1393.02 · doi:10.1103/PhysRev.52.54
[36] Jakovac A and Mati P 2012 Phys. Rev. D 85 085006 · doi:10.1103/PhysRevD.85.085006
[37] Mati P 2016 Nucl. Instrum. Methods Phys. Res. B 369 103-8 · doi:10.1016/j.nimb.2015.10.051
[38] Colafrancesco S, Emritte M S and Marchegiani P 2015 J. Cosmol. Astropart. Phys.JCAP05(2015) 006 · doi:10.1088/1475-7516/2015/05/006
[39] Chandrasekhar S 2010 An Introduction to the Study of Stellar Structure (New York: Dover) · Zbl 0022.19207
[40] Phillips A C 1994 The Physics of Stars (New York: Wiley) · doi:10.1063/1.2808755
[41] Bomatici M, Cano R, De Barbieri O and Engelmann F 1978 Nucl. Fusion23 645
[42] Cima G 1992 Rev. Sci. Instrum.63 4630 · doi:10.1063/1.1143639
[43] Peierls R 1976 Proc. R. Soc. A 347 475-91 · doi:10.1098/rspa.1976.0012
[44] Vigoureux P 1978 Proc. IEE125 709-13 · doi:10.1049/piee.1978.0165
[45] Jones R V and Leslie B 1978 Proc. R. Soc. A 360 347-63 · doi:10.1098/rspa.1978.0072
[46] Apostol T M 1976 Introduction to Analytic Number Theory (New York: Springer) · Zbl 0335.10001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.