×

Effective equations in complex systems: from Langevin to machine learning. (English) Zbl 1459.82246

Summary: The problem of effective equations is reviewed and discussed. Starting from the classical Langevin equation, we show how it can be generalized to Hamiltonian systems with non-standard kinetic terms. A numerical method for inferring effective equations from data is discussed; this protocol allows to check the validity of our results. In addition we show that, with a suitable treatment of time series, such protocol can be used to infer effective models from experimental data. We briefly discuss the practical and conceptual difficulties of a pure data-driven approach in the building of models.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
68T05 Learning and adaptive systems in artificial intelligence

References:

[1] Karplus M and Weaver D L 1976 Protein-folding dynamics Nature260 404-6 · doi:10.1038/260404a0
[2] Donges J F, Zou Y, Marwan N and Kurths J 2009 Complex networks in climate dynamics Eur. Phys. J. Spec. Top.174 157-79 · doi:10.1140/epjst/e2009-01098-2
[3] Baldovin M, Cecconi F, Cencini M, Puglisi A and Vulpiani A 2018 The role of data in model building and prediction: a survey through examples Entropy20 807 · doi:10.3390/e20100807
[4] Dorfman J R and Cohen E G D 1972 Velocity-correlation functions in two and three dimensions: low density Phys. Rev. A 6 776-90 · doi:10.1103/PhysRevA.6.776
[5] Rubin R J 1960 Statistical dynamics of simple cubic lattices. Model for the study of Brownian motion J. Math. Phys.1 309 · doi:10.1063/1.1703664
[6] Zwanzig R 1973 Nonlinear generalized Langevin equations J. Stat. Phys.9 215 · doi:10.1007/BF01008729
[7] Spohn H 1980 Kinetic equations from Hamiltonian dynamics: Markovian limits Rev. Mod. Phys.52 569-615 · doi:10.1103/RevModPhys.52.569
[8] Mitropolsky I 1967 Averaging method in non-linear mechanics Int. J. Non-Linear Mech.2 69-96 · Zbl 0148.18703 · doi:10.1016/0020-7462(67)90020-0
[9] Lemons D S and Gythiel A 1997 Paul Langevin’s 1908 ‘Paper on the theory of Brownian Motion’ (1908 ‘Sur la théorie du mouvement Brownien’ C. R. Acad. Sci., Paris 146 530-3) Am. J. Phys.65 1079-81 · doi:10.1119/1.18725
[10] Pavliotis G and Stuart A 2008 Multiscale Methods and Homogenization (Berlin: Springer) · Zbl 1160.35006
[11] Marx D and Hutter J 2009 Ab Initio Molecular Dynamics and Advanced Methods (Cambridge: Cambridge University Press) · doi:10.1017/CBO9780511609633
[12] Car R and Parrinello M 1985 Unified approach for molecular dynamics and density-functional theory Phys. Rev. Lett.55 2471-4 · doi:10.1103/PhysRevLett.55.2471
[13] Biferale L, Crisanti A, Vergassola M and Vulpiani A 1995 Eddy diffusivities in scalar transport Phys. Fluids7 2725-34 · Zbl 1026.76558 · doi:10.1063/1.868651
[14] Baldovin M, Puglisi A and Vulpiani A 2018 Langevin equation in systems with also negative temperatures J. Stat. Mech. 043207 · Zbl 1459.82220 · doi:10.1088/1742-5468/aab687
[15] Givon D, Kupferman R and Stuart A 2004 Extracting macroscopic dynamics: model problems and algorithms Nonlinearity17 R55 · Zbl 1073.82038 · doi:10.1088/0951-7715/17/6/R01
[16] Kifer Y 2004 Some recent advances in averaging Modern Dynamical Systems and Applications ed M Brin, B Hasselblatt and Y Pesin (Cambridge: Cambridge University Press) · Zbl 1147.37318
[17] Baldovin M, Vulpiani A, Puglisi A and Prados A 2019 Derivation of a Langevin equation in a system with multiple scales: the case of negative temperatures Phys. Rev. E 99 060101 · doi:10.1103/PhysRevE.99.060101
[18] Turner R 1960 Motion of a heavy particle in a one dimensional chain Physica26 269-73 · doi:10.1016/0031-8914(60)90022-7
[19] Ford G W, Kac M and Mazur P 1965 Statistical mechanics of assemblies of coupled oscillators J. Math. Phys.6 504-15 · Zbl 0127.21605 · doi:10.1063/1.1704304
[20] Gardiner C W 1985 Handbook of Stochastic Methods (Berlin: Springer)
[21] Friedrich R, Peinke J, Sahimi M and Reza Rahimi Tabar M 2011 Approaching complexity by stochastic methods: from biological systems to turbulence Phys. Rep.506 87-162 · doi:10.1016/j.physrep.2011.05.003
[22] Peinke J, Tabar M and Wächter M 2019 The Fokker-Planck approach to complex spatiotemporal disordered systems Annu. Rev. Condens. Matter Phys.10 107-32 · doi:10.1146/annurev-conmatphys-033117-054252
[23] Ramsey N F 1956 Thermodynamics and statistical mechanics at negative absolute temperatures Phys. Rev.103 20-8 · Zbl 0074.43007 · doi:10.1103/PhysRev.103.20
[24] Onsager L 1949 Statistical hydrodynamics Il Nuovo Cimento (1943-1954)6 279-87 · doi:10.1007/BF02780991
[25] Iubini S, Franzosi R, Livi R, Oppo G-L and Politi A 2013 Discrete breathers and negative-temperature states New J. Phys.15 023032 · doi:10.1088/1367-2630/15/2/023032
[26] Braun S, Ronzheimer J P, Schreiber M, Hodgman S S, Rom T, Bloch I and Schneider U 2013 Negative absolute temperature for motional degrees of freedom Science339 52-5 · doi:10.1126/science.1227831
[27] Hilbert S, Hänggi P and Dunkel J 2014 Thermodynamic laws in isolated systems Phys. Rev. E 90 062116 · doi:10.1103/PhysRevE.90.062116
[28] Cerino L, Puglisi A and Vulpiani A 2015 A consistent description of fluctuations requires negative temperatures J. Stat. Mech. P12002 · Zbl 1456.82409 · doi:10.1088/1742-5468/2015/12/p12002
[29] Baldovin M, Puglisi A, Sarracino A and Vulpiani A 2017 About thermometers and temperature J. Stat. Mech. 113202 · Zbl 1457.82370 · doi:10.1088/1742-5468/aa933e
[30] Miceli F, Baldovin M and Vulpiani A 2019 Statistical mechanics of systems with long-range interactions and negative absolute temperature Phys. Rev. E 99 042152 · doi:10.1103/PhysRevE.99.042152
[31] Dunkel J and Hilbert S 2014 Consistent thermostatistics forbids negative absolute temperatures Nat. Phys.10 67-72 · doi:10.1038/nphys2815
[32] Romero-Rochín V 2013 Nonexistence of equilibrium states at absolute negative temperatures Phys. Rev. E 88 022144 · doi:10.1103/PhysRevE.88.022144
[33] Campisi M 2015 Construction of microcanonical entropy on thermodynamic pillars Phys. Rev. E 91 052147 · doi:10.1103/PhysRevE.91.052147
[34] Onsager L and Machlup S 1953 Fluctuations and irreversible processes Phys. Rev.91 1505-12 · Zbl 0053.15106 · doi:10.1103/PhysRev.91.1505
[35] Scalliet C, Gnoli A, Puglisi A and Vulpiani A 2015 Cages and anomalous diffusion in vibrated dense granular media Phys. Rev. Lett.114 198001 · doi:10.1103/PhysRevLett.114.198001
[36] Baldovin M, Puglisi A and Vulpiani A 2019 Langevin equations from experimental data: the case of rotational diffusion in granular media PLoS One14 e0212135 · doi:10.1371/journal.pone.0212135
[37] Cecconi F, Cencini M, Falcioni M and Vulpiani A 2012 Predicting the future from the past: an old problem from a modern perspective Am. J. Phys.80 1001-8 · doi:10.1119/1.4746070
[38] Hosni H and Vulpiani A 2018 Forecasting in light of big data Phil. Technol.31 557-69 · doi:10.1007/s13347-017-0265-3
[39] Bradshaw G F, Langley P W and Simon H A 1983 Studying scientific discovery by computer simulation Science222 971-5 · doi:10.1126/science.222.4627.971
[40] Grabiner J V 1986 Computers and the nature of man: a historian’s perspective on controversies about artificial intelligence Bull. Am. Math. Soc. (N.S.)15 113-26 · Zbl 0624.68073 · doi:10.1090/S0273-0979-1986-15461-3
[41] Buchanan M 2019 The limits of machine prediction Nat. Phys.15 304 · doi:10.1038/s41567-019-0489-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.