×

Stretched exponential dynamics of coupled logistic maps on a small-world network. (English) Zbl 1459.82213

Summary: We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability \(p\) of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all \(p\) while for another one, it shows crossover from nonexponential to exponential behavior as \(p \rightarrow 1\). With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.

MSC:

82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

References:

[1] Miller, J.; Huse, D. A., Phys. Rev. E, 48, 2528, (1993) · doi:10.1103/PhysRevE.48.2528
[2] Kaneko, K., Theory and Applications of Coupled Map Lattices, (1993), New York: Wiley, New York · Zbl 0777.00014
[3] Jabeen, Z.; Gupte, N., Phys. Rev. E, 72, (2005) · doi:10.1103/PhysRevE.72.016202
[4] Gade, P. M.; Barve, S.; Senthilkumar, D. V.; Sinha, S., Phys. Rev. E, 75, (2007) · doi:10.1103/PhysRevE.75.066208
[5] Jalan, S.; Amritkar, R. E., Phys. Rev. Lett., 90, (2003) · doi:10.1103/PhysRevLett.90.014101
[6] Erdős, P.; Rényi, A., Mathematicae, 6, 290, (1959) · Zbl 0092.15705
[7] Watts, D. J.; Strogatz, S. H., Nature, 393, 440, (1998) · Zbl 1368.05139 · doi:10.1038/30918
[8] Barabási, A-L; Bonsbeau, E., Sci. Am., 288, 60, (2003) · doi:10.1038/scientificamerican0503-60
[9] Albert, R.; Barabási, A-L, Rev. Mod. Phys., 74, 47, (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[10] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D-U, Phys. Rep., 424, 175, (2006) · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[11] Mahajan, A. V.; Gade, P. M., Phys. Rev. E, 81, (2010) · doi:10.1103/PhysRevE.81.056211
[12] Mahajan, A. V.; Ali Saif, M.; Gade, P. M., Eur. Phys. J. Spec. Top., 222, 895, (2013) · doi:10.1140/epjst/e2013-01892-1
[13] Cosenza, M. G.; Tucci, K., Phys. Rev. E, 65, (2002) · doi:10.1103/PhysRevE.65.036223
[14] Shinoda, K.; Kaneko, K., Phys. Rev. Lett., 117, (2016) · doi:10.1103/PhysRevLett.117.254101
[15] Gade, P. M.; Sinha, S., Phys. Rev. E, 72, (2005) · doi:10.1103/PhysRevE.72.052903
[16] Gade, P. M.; Sahasrabudhe, G. G., Phys. Rev. E, 87, (2013) · doi:10.1103/PhysRevE.87.052905
[17] Marcq, P.; Chaté, H.; Manneville, P., Prog. Theor. Phys. Suppl., 161, 244, (2006) · doi:10.1143/PTPS.161.244
[18] Kohlrausch, R., Pogg. Ann. Chem., 91, 179, (1854)
[19] Williams, G.; Watts, D. C., Trans. Faraday Soc., 66, 80, (1970) · doi:10.1039/tf9706600080
[20] Glotzer, S.; Jan, N.; Lookman, T.; Maclsaac, A.; Poole, P., Phys. Rev. E, 57, 7350, (1998) · doi:10.1103/PhysRevE.57.7350
[21] Hunt, E. R.; Gade, P. M.; Mousseau, N., Europhys. Lett., 60, 827, (2002) · doi:10.1209/epl/i2002-00291-y
[22] Chaudhuri, P.; Berthier, L.; Kob, W., Phys. Rev. Lett., 99, (2007) · doi:10.1103/PhysRevLett.99.060604
[23] Mata, A. S.; Pastor-Satorras, R., Eur. Phys. J. B, 88, 38, (2015)
[24] Roy, M.; Amritkar, R. E., Phys. Rev. E, 55, 2422, (1997) · doi:10.1103/PhysRevE.55.2422
[25] Simdyankin, S.; Normand, N.; Hunt, E. R., Phys. Rev. E, 66, (2002) · doi:10.1103/PhysRevE.66.066205
[26] Cipelletti, L.; Ramos, L., J. Phys.: Condens. Matter, 17, R253, (2005) · doi:10.1088/0953-8984/17/6/R01
[27] Pavesi, L., J. Appl. Phys., 80, 216, (1996) · doi:10.1063/1.362807
[28] Taillefumier, T.; Magnasco, M. O., Proc. Natl Acad. Sci., 110, E1438, (2013) · Zbl 1292.60082 · doi:10.1073/pnas.1212479110
[29] Kurihara, S.; Mizunol, T.; Takayasu, H.; Takayasu, M., The Application of Econophysics, p 169, (2004), Tokyo: Springer, Tokyo
[30] Matte, M. B.; Gade, P. M., J. Stat. Mech., (2016) · Zbl 1456.82741 · doi:10.1088/1742-5468/2016/11/113203
[31] Lawless, J. F., Statistical Models and Methods for Lifetime Data, (2011), New York: Wiley, New York · Zbl 0541.62081
[32] Gurevich, S. V., Phil. Trans. R. Soc. A, 372, 20140014, (2014) · Zbl 1353.35300 · doi:10.1098/rsta.2014.0014
[33] Akhmediev, N.; Ankiewicz, A., Dissipative Solitons, (2005), Berlin: Springer, Berlin · Zbl 1061.35003
[34] Purwins, H-G; Bödeker, H. U.; Amiranashvili, Sh, Adv. Phys., 59, 485, (2010) · doi:10.1080/00018732.2010.498228
[35] Abrams, D. M.; Strogatz, S. H., Phys. Rev. Lett., 93, (2004) · doi:10.1103/PhysRevLett.93.174102
[36] Omelchenko, I.; Maistrenko, Y.; Hövel, P.; Schöll, E., Phys. Rev. Lett., 106, (2011) · doi:10.1103/PhysRevLett.106.234102
[37] Hanson, J. E., Encyclopedia of Complexity and Systems Science, p 768, (2009), New York: Springer, New York · Zbl 1171.93001
[38] Martens, E. A.; Thutupalli, S.; Fourriére, A.; Hallatschek, O., Proc. Natl Acad. Sci., 110, 10563, (2013) · doi:10.1073/pnas.1302880110
[39] Tinsley, M. R.; Nkomo, S.; Showalter, K., Nat. Phys., 8, 662, (2012) · doi:10.1038/nphys2371
[40] Chowdhury, D.; Santen, L.; Schadschneider, A., Phys. Rep., 329, 199, (2000) · doi:10.1016/S0370-1573(99)00117-9
[41] Shinbrot, T.; Duong, N-H; Hettenbach, M.; Kwan, L., Granular Matter, 9, 295, (2007) · doi:10.1007/s10035-007-0047-1
[42] Sonawane, A. R.; Gade, P. M., Chaos, 21, (2011) · doi:10.1063/1.3556683
[43] Martí, A. C.; Ponce, M.; Masoller, C., Physica A, 371, 104, (2006) · doi:10.1016/j.physa.2006.04.093
[44] Yu, S.; Hou, Z-H; Xin, H-W, Chin. Phys. Lett., 25, 3875, (2008) · doi:10.1088/0256-307X/25/11/011
[45] Jost, J.; Joy, M. P., Phys. Rev. E, 65, (2001) · doi:10.1103/PhysRevE.65.016201
[46] Amir, A.; Oreg, Y.; Imry, Y., Proc. Natl Acad. Sci., 109, 1850, (2012) · doi:10.1073/pnas.1120147109
[47] Shimer, M. T.; Täuber, U. C.; Pleimling, M., Europhys. Lett., 91, 67005, (2010) · doi:10.1209/0295-5075/91/67005
[48] Grassberger, P.; Procaccia, I., J. Chem. Phys., 77, 6281, (1982) · doi:10.1063/1.443832
[49] Gade, P. M.; Sinha, S., Int. J. Bifurcation Chaos, 16, 2767, (2006) · Zbl 1185.37188 · doi:10.1142/S0218127406016458
[50] Campos, P. R A.; de Oliveira, V. M.; Moreira, F. G B., Phys. Rev. E, 67, (2003) · doi:10.1103/PhysRevE.67.026104
[51] Oono, Y.; Puri, S., Phys. Rev. Lett., 58, 836, (1987) · doi:10.1103/PhysRevLett.58.836
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.