×

Orientation relationship in finite dimensional space. (English) Zbl 1459.62237

The authors consider regression of a point on the surface of the unit sphere in \(d\) dimensions given a point on the surface of the unit sphere in \(p\) dimensions, where \(p\) may not be equal to \(d\), using Möbius transformations as mentioned in [S. Kato and M. C. Jones, J. Am. Stat. Assoc. 105, No. 489, 249–262 (2010; Zbl 1397.60035)]. Point projection is added to the rotation and linear transformation for the regression link function. The parametric model, the local constant and local linear nonparametric models are compared with respect to the \(D\) measure based on all observations. A very illustrative example is given.

MSC:

62R30 Statistics on manifolds
62H11 Directional data; spatial statistics
62J12 Generalized linear models (logistic models)

Citations:

Zbl 1397.60035

References:

[1] Bryner, D., Klassen, E., & Srivastava, A. (2012). Affine invariant elastic shape analysis of planar contours. Paper presented at the IEEE Conference on Computer Vision and Pattern Recognition (vol. 2012, pp. 390‐397).
[2] Chang, T. (1986). Spherical regression. Annals of Statistics, 14, 907-924. · Zbl 0605.62079
[3] Chang, T. (1989). Spherical regression with errors in variables. Annals of Statistics, 17, 293-306. · Zbl 0669.62042
[4] Chapman, G. R., Chen, G., & Kim, P. T. (1995). Assessing geometrical integrity through spherical regression techniques. Statistica Sinica, 5, 173-220. · Zbl 0828.62088
[5] Di Marzio, M., Panzera, A., & Taylor, C. C. (2014). Nonparametric regression for spherical data. Journal of the American Statistical Association, 109, 748-763. · Zbl 1367.62115
[6] Downs, T. D. (2003). Spherical regression. Biometrika, 90, 655-668. · Zbl 1436.62194
[7] Downs, T. D., & Mardia, K. V. (2002). Circular regression. Biometrika, 89, 683-697. · Zbl 1037.62056
[8] Durrett, R. (1984). Brownian motion and martingales in analysis (MR0750829). Belmont, CA: Wadsworth Advanced Books. · Zbl 0554.60075
[9] Fisher, N., Lewis, T., & Embleton, J. J. (1993). Statistical analysis of spherical data. Cambridge, MA: Cambridge University Press. · Zbl 0782.62059
[10] Hall, P., Watson, G. S., & Cabrera, J. (1987). Kernel density estimation with spherical data. Biometrika, 74, 751-762. · Zbl 0632.62033
[11] Jha, J., & Biswas, A. (2017). Multiple circular‐circular regression. Statistical Modelling, 17(3), 142-171. · Zbl 07289484
[12] Kato, S. (2009). A distribution for a pair of unit vectors generated by Brownian motion. Bernoulli, 15, 898-921. · Zbl 1201.62066
[13] Kato, S., Shimizu, K., & Shieh, G. S. (2008). A circular‐circular regression model. Statistica Sinica, 18, 633-645. · Zbl 1135.62044
[14] Mackenzie, J. K. (1957). The estimation of an orientation relationship. Acta Crystallographica, 10, 61-62.
[15] McCullagh, P. (1989). Some statistical properties of a family of continuous univariate distributions. Journal of the American Statistical Association, 84, 125-129. · Zbl 0676.62015
[16] Minh, D. L. P., & Farnum, N. R. (2003). Using bilinear transformations to induce probability distributions. Communications in Statistics - Theory and Methods, 39, 1-9. · Zbl 1025.62003
[17] Mulcahy, K. (2007). Lambert azimuthal equal area. New York, NY: City University of New York.
[18] Müller, M. E. (1956). Some continuous Monte Carlo methods for the Dirichlet problem. The Annals of Mathematical Statistics, 27, 569-589. · Zbl 0075.28902
[19] Rivest, L.‐P. (1989). Spherical regression for concentrated Fisher‐von Mises distribution. Annals of Statistics, 17, 307-317. · Zbl 0669.62041
[20] Rivest, L.‐P. (1997). A decentred predictor for circular‐circular regression. Biometrika, 84, 717-726. · Zbl 0888.62051
[21] Rodrigues, O. (1840). Des lois géometriques qui regissent les déplacements d’ un systéme solide dans l’ espace, et de la variation des coordonnées provenant de ces déplacement considérées indépendent des causes qui peuvent les produire. Journal de Mathématiques Pures et Appliquées, 5, 380-440.
[22] Rosenthal, M., Wu, W., Klassen, E., & Srivastava, A. (2014). Spherical regression models using projective linear transformations. Journal of the American Statistical Association, 109, 1615-1624. · Zbl 1368.62185
[23] Stephens, M. A. (1979). Vector correlation. Biometrika, 66, 41-48. · Zbl 0402.62033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.