×

Coalescence estimates for the corner growth model with exponential weights. (English) Zbl 1459.60208

Electron. J. Probab. 25, Paper No. 85, 31 p. (2020); erratum ibid. 26, Paper No. 127, 4 p. (2021).
Summary: We establish estimates for the coalescence time of semi-infinite directed geodesics in the planar corner growth model with i.i.d. exponential weights. There are four estimates: upper and lower bounds on the probabilities of both fast and slow coalescence on the correct spatial scale with exponent \(3/2\). Our proofs utilize a geodesic duality introduced by Pimentel and properties of the increment-stationary last-passage percolation process. For fast coalescence our bounds are new and they have matching optimal exponential order of magnitude. For slow coalescence we reproduce bounds proved earlier with integrable probability inputs, except that our upper bound misses the optimal order by a logarithmic factor.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60K37 Processes in random environments

References:

[1] Gideon Amir, Omer Angel, and Benedek Valkó, The TASEP speed process, Ann. Probab. 39 (2011), no. 4, 1205-1242. · Zbl 1225.82039 · doi:10.1214/10-AOP561
[2] Márton Balázs, Ofer Busani, and Timo Seppäläinen, Non-existence of bi-infinite geodesics in the exponential corner growth model, 2019, arXiv:1909.06883.
[3] Márton Balázs, Ofer Busani, and Timo Seppäläinen, Local stationarity of exponential last passage percolation, 2020, arXiv:1909.06883.
[4] Márton Balázs, Eric Cator, and Timo Seppäläinen, Cube root fluctuations for the corner growth model associated to the exclusion process, Electron. J. Probab. 11 (2006), no. 42, 1094-1132 (electronic). · Zbl 1139.60046
[5] Márton Balázs, Júlia Komjáthy, and Timo Seppäläinen, Microscopic concavity and fluctuation bounds in a class of deposition processes, Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012), no. 1, 151-187. · Zbl 1247.82039
[6] Márton Balázs and Timo Seppäläinen, Order of current variance and diffusivity in the asymmetric simple exclusion process, Ann. of Math. (2) 171 (2010), no. 2, 1237-1265. · Zbl 1200.60083
[7] Riddhipratim Basu, Sourav Sarkar, and Allan Sly, Coalescence of geodesics in exactly solvable models of last passage percolation, J. Math. Phys. 60 (2019), no. 9, 093301, 22. · Zbl 1480.60284 · doi:10.1063/1.5093799
[8] Manan Bhatia, Moderate deviation and exit time estimates for stationary last passage percolation, 2020, arXiv:2004.12987. · Zbl 1462.82034 · doi:10.1007/s10955-020-02632-x
[9] Eric Cator and Piet Groeneboom, Second class particles and cube root asymptotics for Hammersley’s process, Ann. Probab. 34 (2006), no. 4, 1273-1295. · Zbl 1101.60076 · doi:10.1214/009117906000000089
[10] Hans Chaumont and Christian Noack, Characterizing stationary \(1+1\) dimensional lattice polymer models, Electron. J. Probab. 23 (2018), Paper No. 38, 19. · Zbl 1390.60345 · doi:10.1214/18-EJP163
[11] Ivan Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl. 1 (2012), no. 1, 1130001, 76. · Zbl 1247.82040 · doi:10.1142/S2010326311300014
[12] David Coupier, Multiple geodesics with the same direction, Electron. Commun. Probab. 16 (2011), 517-527. · Zbl 1244.60093 · doi:10.1214/ECP.v16-1656
[13] Murray Eden, A two-dimensional growth process, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. IV, Univ. California Press, Berkeley, Calif., 1961, pp. 223-239. · Zbl 0104.13801
[14] Elnur Emrah, Chris Janjigian, and Timo Seppäläinen, Right-tail moderate deviations in the exponential last-passage percolation, 2020, arXiv:2004.04285.
[15] Wai-Tong Louis Fan and Timo Seppäläinen, Joint distribution of Busemann functions in the exactly solvable corner growth model, 2018, arXiv:1808.09069.
[16] Pablo A. Ferrari and Leandro P. R. Pimentel, Competition interfaces and second class particles, Ann. Probab. 33 (2005), no. 4, 1235-1254. · Zbl 1078.60083 · doi:10.1214/009117905000000080
[17] Nicos Georgiou, Firas Rassoul-Agha, and Timo Seppäläinen, Stationary cocycles and Busemann functions for the corner growth model, Probab. Theory Related Fields 169 (2017), no. 1-2, 177-222. · Zbl 1407.60122
[18] J. M. Hammersley and D. J. A. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif, Springer-Verlag, New York, 1965, pp. 61-110. · Zbl 0143.40402
[19] C. Douglas Howard and Charles M. Newman, Euclidean models of first-passage percolation, Probab. Theory Related Fields 108 (1997), no. 2, 153-170. · Zbl 0883.60091 · doi:10.1007/s004400050105
[20] C. Douglas Howard and Charles M. Newman, Geodesics and spanning trees for Euclidean first-passage percolation, Ann. Probab. 29 (2001), no. 2, 577-623. · Zbl 1062.60099 · doi:10.1214/aop/1008956686
[21] Christopher Janjigian, Firas Rassoul-Agha, and Timo Seppäläinen, Geometry of geodesics through Busemann measures in directed last-passage percolation, 2019, arXiv:1908.09040. · Zbl 1430.60085
[22] Cristina Licea and Charles M. Newman, Geodesics in two-dimensional first-passage percolation, Ann. Probab. 24 (1996), no. 1, 399-410. · Zbl 0863.60097 · doi:10.1214/aop/1042644722
[23] Charles M. Newman, A surface view of first-passage percolation, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 1017-1023. · Zbl 0848.60089
[24] Leandro P. R. Pimentel, Duality between coalescence times and exit points in last-passage percolation models, Ann. Probab. 44 (2016), no. 5, 3187-3206. · Zbl 1361.60095 · doi:10.1214/15-AOP1044
[25] Jeremy Quastel, Introduction to KPZ, Current developments in mathematics, 2011, Int. Press, Somerville, MA, 2012, pp. 125-194. · Zbl 1316.60019
[26] Timo Seppäläinen, Scaling for a one-dimensional directed polymer with boundary conditions, Ann. Probab. 40 (2012), no. 1, 19-73, Corrected version available at arXiv:0911.2446. · Zbl 1254.60098 · doi:10.1214/10-AOP617
[27] Timo Seppäläinen, The corner growth model with exponential weights, Random growth models, Proc. Sympos. Appl. Math., vol. 75, Amer. Math. Soc., Providence, RI, 2018, arXiv:1709.05771, pp. 133-201. · Zbl 0931.41017
[28] Timo Seppäläinen, Existence, uniqueness and coalescence of directed planar geodesics: proof via the increment-stationary growth process, 2018, To appear in Ann. Inst. Henri Poincaré Probab. Stat., arXiv:1812.02689.
[29] Mario V.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.