×

On a DGL-map between derivations of Sullivan minimal models. (English) Zbl 1459.55007

Given a simply connected CW-complex \(X\) of finite type, let aut\(_{1}\left(X\right) =\) map\(\left( X,X;id\right) \) denote the identity component of the space aut\(\left( X\right) \) of self-equivalences of \(X\). The group-like space aut\(_{1}\left( X\right) \) has a classifying space Baut\(_{1}\left( X\right) \). It appears as the base space of the universal fibration \(X\rightarrow UE\rightarrow\)Baut\(_{1}\left( X\right) \).
Let \(f:X\rightarrow Y\) be a fibration of simply connected finite CW-complexs. In this paper, the author gives partial answers to the following question: When does the map \(f\) strictly induce a map \(a_{f}:\left( \text{Baut}_{1}\left(X\right)\right) _{\mathbb{Q}}\rightarrow\left( \text{Baut}_{1}\left( Y\right) \right)_{\mathbb{Q}}?\)
Some results for this question are obtained by Theorem \(1.5\). In particular, a rationally weakly trivial map \(f:X\rightarrow Y\) strictly induces \(a_{f}:\left( \text{Baut}_{1}\left( X\right) \right) _{\mathbb{Q}}\rightarrow\left(\text{Baut}_{1}\left(Y\right)\right)_{\mathbb{Q}}\) if and only if it is \(\pi_{\mathbb{Q}}\)-separable.
In Section \(3\), the author gives some conditions that the strictly induced map \(a_{f}:\left(\text{Baut}_{1}\left(X\right)\right) _{\mathbb{Q}}\rightarrow\left(\text{Baut}_{1}\left(Y\right)\right)_{\mathbb{Q}}\) admits a section.
The paper finishes with many other interesting results (see Section \(4\) and also \(5\)).

MSC:

55P62 Rational homotopy theory
55R15 Classification of fiber spaces or bundles in algebraic topology

References:

[1] Allday, C.; Puppe, V., Cohomological Methods in Transfomation Groups (1993), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0799.55001
[2] Allaud, G., On the classification of fiber spaces, Math. Z., 92, 110-125 (1966) · Zbl 0139.16603 · doi:10.1007/BF01312430
[3] Booth, P.; Heath, P.; Morgan, C.; Piccinini, R., H-spaces of self-equivalences of fibrations and bundles, Proc. London Math. (3), 49, 111-127 (1984) · Zbl 0525.55005 · doi:10.1112/plms/s3-49.1.111
[4] Buijs, U.; Smith, SB, Rational homotopy type of the classifying space for fiberwise self-equivalenvces, Proc. AMS, 141, 2153-2167 (2013) · Zbl 1275.55006 · doi:10.1090/S0002-9939-2012-11560-6
[5] Dold, A.; Lashof, R., Principal quasi-fibrations and fibre homotopy equivalence of bundles, Ill. J. Math., 3, 285-305 (1959) · Zbl 0088.15301 · doi:10.1215/ijm/1255455128
[6] Félix, Y.; Halperin, S., Rational LS category and its applications, Trans. AMS, 273, 1-38 (1982) · Zbl 0508.55004 · doi:10.2307/1999190
[7] Félix, Y.; Halperin, S.; Thomas, JC, Rational Homotopy Theory, Graduate Texts in Mathematics 205 (2001), Berlin: Springer, Berlin · Zbl 0961.55002
[8] Félix, Y.; Lupton, G.; Smith, SB, The rational homotopy type of the space of self-equivalences of a fibration, Homol. Homotopy Appl., 12, 371-400 (2010) · Zbl 1214.55011 · doi:10.4310/HHA.2010.v12.n2.a13
[9] Félix, Y.; Oprea, J.; Tanré, D., Algebraic Models in Geometry (2008), Oxford: Oxford G.T.M, Oxford · Zbl 1149.53002
[10] Gatsinzi, JB, LS-category of classifying spaces, Bull. Belg. Math. Soc. Simon Stevin, 2, 2, 121-126 (1995) · Zbl 0828.55006 · doi:10.36045/bbms/1103408749
[11] Gottlieb, DH, Lifting Actions in Fibrations, 217-254 (1978), Berlin: Springer L.N.M, Berlin · Zbl 0404.55018
[12] Halperin, S., Finiteness in the minimal models of Sullivan, Trans. AMS, 230, 173-199 (1977) · Zbl 0364.55014 · doi:10.1090/S0002-9947-1977-0461508-8
[13] Halperin, S., Rational Homotopy and Torus Actions, London Math. Soc. Lecture Note Series, 293-306 (1985), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0562.57015
[14] Hilton, P.; Mislin, G.; Roitberg, J., Localization of nilpotent groups and spaces, North Holland Math. Stud., 15, 1-156 (1975) · Zbl 0323.55016 · doi:10.1016/S0304-0208(08)72791-9
[15] Jessup, B.; Lupton, G., Free torus actions and two-stage spaces, Math. Proc. Camb. Phil. Soc., 137, 191-207 (2004) · Zbl 1072.55009 · doi:10.1017/S0305004103007242
[16] Lupton, G., Note on a Conjecture of Stephen Halperin, 148-163 (1990), Berlin: Springer L.N.M, Berlin
[17] Peter May, J., Fibrewise localization and completion, Trans. Am. Math. Soc, 258, 127-146 (1980) · Zbl 0429.55004 · doi:10.1090/S0002-9947-1980-0554323-8
[18] Meier, W., Rational universal fibrations and flag manifolds, Math. Ann., 258, 329-340 (1982) · Zbl 0466.55012 · doi:10.1007/BF01450686
[19] Nishinobu, H.; Yamaguchi, T., Sullivan minimal models of classifying spaces for non-formal spaces of small rank, Topol. Appl., 196, 290-307 (2015) · Zbl 1329.55011 · doi:10.1016/j.topol.2015.10.003
[20] Salvatore, P., Rational homotopy nilpotency of self-equivalences, Topol. Appl., 77, 37-50 (1997) · Zbl 0881.55010 · doi:10.1016/S0166-8641(96)00102-2
[21] Shiga, H.; Tezuka, M., Rational fibrations, homogeneous spaces with positive Euler characteristics and Jacobians, Ann. Inst. Fourier (Grenoble), 37, 81-106 (1987) · Zbl 0608.55006 · doi:10.5802/aif.1078
[22] Smith, S. B.: The classifying space for fibrations and rational homotopy theory. In: The 5th GeToPhyMa Summer School on “Rational Homotopy Theory and its Interactions” in Rabat (2016)
[23] Stasheff, J., A classification theorem for fibre spaces, Topology, 2, 239-246 (1963) · Zbl 0123.39705 · doi:10.1016/0040-9383(63)90006-5
[24] Sullivan, D., Infinitesimal computations in topology, IHES, 47, 269-331 (1978) · Zbl 0374.57002 · doi:10.1007/BF02684341
[25] Tanré, D., Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan. Lecture Note in Math (1983), Berlin: Springer, Berlin · Zbl 0539.55001
[26] Thomas, JC, Rational homotopy of Serre fibrations, Ann. Inst. Fourier, 331, 71-90 (1981) · Zbl 0446.55009 · doi:10.5802/aif.838
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.