×

Functions with isotropic sections. (English) Zbl 1459.52008

Summary: We prove a local version of a recently established theorem by Myroshnychenko, Ryabogin and the second named author [S. Myroshnychenko et al., Int. Math. Res. Not. 2019, No. 10, 3015–3031 (2019; Zbl 1419.52005)]. More specifically, we show that if \(n\geq 3\), \(g:\mathbb{S}^{n-1}\to \mathbb{R}\) is a bounded measurable function, \( U\) is an open connected subset of \(\mathbb{S}^{n-1}\) and the restriction (section) of \(f\) onto any great sphere perpendicular to \(U\) is isotropic, then \(\mathcal{C}(g)\vert_U=c+\langle a,\cdot \rangle\) and \(\mathcal{R}(g)\vert_U=c'\), for some fixed constants \(c,c'\in \mathbb{R}\) and for some fixed vector \(a\in \mathbb{R}^n\). Here, \( \mathcal{C}(g)\) denotes the cosine transform and \(\mathcal{R}(g)\) denotes the Funk transform of \(g\). However, we show that an even \(g\) does not need to be equal to a constant almost everywhere in \(U^\perp \operatorname{:=} \bigcup_{u\in U}(\mathbb{S}^{n-1}\cap u^\perp )\). For the needs of our proofs, we obtain a new generalization of a result from classical differential geometry, in the setting of convex hypersurfaces, that we believe is of independent interest.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
52A30 Variants of convex sets (star-shaped, (\(m, n\))-convex, etc.)
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)

Citations:

Zbl 1419.52005

References:

[1] Amir, Dan, Characterizations of inner product spaces, Operator Theory: Advances and Applications 20, vi+200 pp. (1986), Birkh\"{a}user Verlag, Basel · Zbl 0617.46030 · doi:10.1007/978-3-0348-5487-0
[2] Berg, Christian, Corps convexes et potentiels sph\'{e}riques, Mat.-Fys. Medd. Danske Vid. Selsk., 37, 6, 64 pp. (1969) pp. (1969) · Zbl 0181.38303
[3] Bianchi, Gabriele; Gardner, Richard J.; Gronchi, Paolo, Symmetrization in geometry, Adv. Math., 306, 51-88 (2017) · Zbl 1366.52003 · doi:10.1016/j.aim.2016.10.003
[4] Bonnesen, T.; Fenchel, W., Theory of convex bodies, x+172 pp. (1987), BCS Associates, Moscow, ID · Zbl 0628.52001
[5] do Carmo, Manfredo Perdig\~{a}o, Riemannian geometry, Mathematics: Theory & Applications, xiv+300 pp. (1992), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0752.53001 · doi:10.1007/978-1-4757-2201-7
[6] Deutsch, Frank, Best approximation in inner product spaces, CMS Books in Mathematics/Ouvrages de Math\'{e}matiques de la SMC 7, xvi+338 pp. (2001), Springer-Verlag, New York · Zbl 0980.41025 · doi:10.1007/978-1-4684-9298-9
[7] Gardner, Richard J., Geometric tomography, Encyclopedia of Mathematics and its Applications 58, xxii+492 pp. (2006), Cambridge University Press, New York · Zbl 1102.52002 · doi:10.1017/CBO9781107341029
[8] Gardner, R. J.; Vol\v{c}i\v{c}, A., Tomography of convex and star bodies, Adv. Math., 108, 2, 367-399 (1994) · Zbl 0831.52002 · doi:10.1006/aima.1994.1075
[9] Groemer, H., Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications 61, xii+329 pp. (1996), Cambridge University Press, Cambridge · Zbl 0877.52002 · doi:10.1017/CBO9780511530005
[10] Gromov, M. L., On a geometric hypothesis of Banach, Izv. Akad. Nauk SSSR Ser. Mat., 31, 1105-1114 (1967) · Zbl 0162.44402
[11] Helgason, Sigur\dj ur, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math., 113, 153-180 (1965) · Zbl 0163.16602 · doi:10.1007/BF02391776
[12] Hug, Daniel, Absolute continuity for curvature measures of convex sets. I, Math. Nachr., 195, 139-158 (1998) · Zbl 0938.52003 · doi:10.1002/mana.19981950108
[13] Hug, Daniel, Absolute continuity for curvature measures of convex sets. II, Math. Z., 232, 3, 437-485 (1999) · Zbl 0954.52006 · doi:10.1007/PL00004765
[14] Hug, Daniel, Absolute continuity for curvature measures of convex sets. III, Adv. Math., 169, 1, 92-117 (2002) · Zbl 1030.52003 · doi:10.1006/aima.2001.2055
[15] Kiderlen, Markus, Stability results for convex bodies in geometric tomography, Indiana Univ. Math. J., 57, 5, 1999-2038 (2008) · Zbl 1161.52004 · doi:10.1512/iumj.2008.57.3348
[16] Lutwak, Erwin, On quermassintegrals of mixed projection bodies, Geom. Dedicata, 33, 1, 51-58 (1990) · Zbl 0692.52006 · doi:10.1007/BF00147600
[17] Mani, P., Fields of planar bodies tangent to spheres, Monatsh. Math., 74, 145-149 (1970) · Zbl 0189.52901 · doi:10.1007/BF01299036
[18] Myroshnychenko, Sergii; Ryabogin, Dmitry; Saroglou, Christos, Star bodies with completely symmetric sections, Int. Math. Res. Not. IMRN, 10, 3015-3031 (2019) · Zbl 1419.52005 · doi:10.1093/imrn/rnx211
[19] Nazarov, Fedor; Ryabogin, Dmitry; Zvavitch, Artem, An asymmetric convex body with maximal sections of constant volume, J. Amer. Math. Soc., 27, 1, 43-68 (2014) · Zbl 1283.52005 · doi:10.1090/S0894-0347-2013-00777-8
[20] Rubin, Boris, Radon transforms and Gegenbauer-Chebyshev integrals, I, Anal. Math. Phys., 7, 2, 117-150 (2017) · Zbl 1382.44002 · doi:10.1007/s13324-016-0133-9
[21] Ryabogin, Dmitry, On the continual Rubik’s cube, Adv. Math., 231, 6, 3429-3444 (2012) · Zbl 1260.52003 · doi:10.1016/j.aim.2012.09.010
[22] Ryabogin, Dmitry, On symmetries of projections and sections of convex bodies. Discrete geometry and symmetry, Springer Proc. Math. Stat. 234, 297-309 (2018), Springer, Cham · Zbl 1421.52006 · doi:10.1007/978-3-319-78434-2\_17
[23] Schneider, Rolf, Convex bodies with congruent sections, Bull. London Math. Soc., 12, 1, 52-54 (1980) · Zbl 0401.52001 · doi:10.1112/blms/12.1.52
[24] Schneider, Rolf, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 151, xxii+736 pp. (2014), Cambridge University Press, Cambridge · Zbl 1287.52001
[25] Souam, Rabah; Van der Veken, Joeri, Totally umbilical hypersurfaces of manifolds admitting a unit Killing field, Trans. Amer. Math. Soc., 364, 7, 3609-3626 (2012) · Zbl 1277.53021 · doi:10.1090/S0002-9947-2012-05472-9
[26] Taylor, Michael E., Partial differential equations I. Basic theory, Applied Mathematical Sciences 115, xxii+654 pp. (2011), Springer, New York · Zbl 1206.35002 · doi:10.1007/978-1-4419-7055-8
[27] Weil, Wolfgang, Kontinuierliche Linearkombination von Strecken, Math. Z., 148, 1, 71-84 (1976) · Zbl 0309.52003 · doi:10.1007/BF01187872
[28] Willmore, T. J., Mean value theorems in harmonic Riemannian spaces, J. London Math. Soc., 25, 54-57 (1950) · Zbl 0036.23403 · doi:10.1112/jlms/s1-25.1.54
[29] Zhang, Ning, On bodies with congruent sections or projections, J. Differential Equations, 265, 5, 2064-2075 (2018) · Zbl 1393.52004 · doi:10.1016/j.jde.2018.04.025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.