×

Strong convergence of the gradients for \(p\)-Laplacian problems as \(p \rightarrow \infty \). (English) Zbl 1459.35219

Summary: In this paper we prove that the gradients of solutions to the Dirichlet problem for \(- \Delta_p u_p = f\), with \(f > 0\), converge as \(p \to \infty\) strongly in every \(L^q\) with \(1 \leq q < \infty\) to the gradient of the limit function. This convergence is sharp since a simple example in 1-d shows that there is no convergence in \(L^\infty \). For a nonnegative \(f\) we obtain the same strong convergence inside the support of \(f\). The same kind of result also holds true for the eigenvalue problem for a suitable class of domains (as balls or stadiums).

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] Araujo, D.; Teixeira, E. V.; Urbano, J. M., Towards the \(C^{p^\prime}\)-regularity conjecture in higher dimensions, Int. Math. Res. Not., 20, 6481-6495 (2018) · Zbl 1407.35041
[2] Araujo, D.; Teixeira, E. V.; Urbano, J. M., A proof of the \(C^{p^\prime}\)-regularity conjecture in the plane, Adv. Math., 316, 541-553 (2017) · Zbl 1379.35144
[3] Aronsson, G.; Crandall, M. G.; Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull. Am. Math. Soc., 41, 439-505 (2004) · Zbl 1150.35047
[4] Barron, E. N.; Evans, L. C.; Jensen, R., The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Am. Math. Soc., 360, 77-101 (2008) · Zbl 1125.35019
[5] Bhattacharya, T.; DiBenedetto, E.; Manfredi, J. J., Limits as \(p \to \infty\) of \(\operatorname{\Delta}_p u_p = f\) and related extremal problems, Rend. Semin. Mat. (Torino), 15-68 (1991)
[6] Boccardo, L.; Gallouët, T., Nonlinear elliptic equations with right-hand side measures, Commun. Partial Differ. Equ., 17, 641-655 (1992) · Zbl 0812.35043
[7] Caselles, V.; Morel, J. M.; Sbert, C., An axiomatic approach to image interpolation, IEEE Trans. Image Process., 7, 3, 376-386 (1998) · Zbl 0993.94504
[8] Crandall, M. G.; Evans, L. C.; Gariepy, R. F., Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differ. Equ., 13, 2, 123-139 (2001) · Zbl 0996.49019
[9] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1-67 (1992) · Zbl 0755.35015
[10] Cong, G.; Esser, M.; Parvin, B.; Bebis, G., Shape metamorphism using p-Laplacian equation, (Proc. of the 17th International Conference on Pattern Recognition. Proc. of the 17th International Conference on Pattern Recognition, ICPR (2004))
[11] Evans, L. C., Partial Differential Equations, Grad. Stud. Math., vol. 19 (1998), Amer. Math. Soc. · Zbl 0902.35002
[12] García-Azorero, J.; Manfredi, J. J.; Peral, I.; Rossi, J. D., The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem, Nonlinear Anal., 66, 2, 349-366 (2007) · Zbl 1387.35286
[13] Ishii, H.; Loreti, P., Limits of solutions of p-Laplace equations as p goes to infinity and related variational problems, SIAM J. Math. Anal., 37, 2, 411-437 (2005) · Zbl 1134.35307
[14] Jensen, R., Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal., 123, 51-74 (1993) · Zbl 0789.35008
[15] Juutinen, P.; Lindqvist, P.; Manfredi, J. J., The ∞-eigenvalue problem, Arch. Ration. Mech. Anal., 148, 2, 89-105 (1999) · Zbl 0947.35104
[16] Juutinen, P.; Lindqvist, P.; Manfredi, J. J., On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33, 3, 699-717 (2001) · Zbl 0997.35022
[17] Leray, J.; Lions, J. L., Quelques résultats de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty et Browder, Bull. Soc. Math. Fr., 93, 97-107 (1965) · Zbl 0132.10502
[18] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002
[19] Pimentel, E. A.; Rampasso, G. C.; Santos, M. S., Improved regularity for the p-Poisson equation, Nonlinearity, 33, 6, 3050-3061 (2020) · Zbl 1481.35104
[20] Yu, Y., Some properties of the infinity ground state, Indiana Univ. Math. J., 56, 2, 947-964 (2007) · Zbl 1114.49032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.