×

Biharmonic equations with totally characteristic degeneracy. (English) Zbl 1459.35125

Summary: In this paper, we study the biharmonic operator on a manifold with conical singularities and consider the existence of non-trivial weak solution for the corresponding semilinear degenerate elliptic equation with critical cone Sobolev exponents by the cone Sobolev inequality and Poincaré inequality. Furthermore, we show an interesting integral identity, which can be used to discuss the non-existence results for some biharmonic equations under Navier boundary conditions.

MSC:

35J40 Boundary value problems for higher-order elliptic equations
58J05 Elliptic equations on manifolds, general theory
31B30 Biharmonic and polyharmonic equations and functions in higher dimensions
31B25 Boundary behavior of harmonic functions in higher dimensions
35J70 Degenerate elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[2] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 8, 437-477 (1983) · Zbl 0541.35029
[3] Chabrowski, J.; Yang, J., Nonnegative solutions for semilinear biharmonic equations in \(\mathbb{R}^N\), Analysis, 17, 35-59 (1997) · Zbl 0879.35051
[4] Chen, H.; Liu, X.; Wei, Y., Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents, Ann. Global Anal. Geom., 39, 27-43 (2011) · Zbl 1207.35132
[5] Chen, H.; Liu, X.; Wei, Y., Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities, Calc. Var. Partial Differential Equations, 43, 463-484 (2012) · Zbl 1255.58007
[6] Chen, H.; Liu, X.; Wei, Y., Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term, J. Differential Equations, 252, 4289-4314 (2012) · Zbl 1239.58012
[7] Chen, H.; Liu, X.; Wei, Y., Multiple solutons for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents, J. Differential Equations, 252, 4200-4228 (2012) · Zbl 1239.35045
[8] Chen, H.; Liu, X.; Wei, Y., Multiple solutions for semi-linear corner degenerate elliptic equations, J. Funct. Anal., 266, 3815-3839 (2014) · Zbl 1294.35031
[9] Chen, H.; Qiao, R.; Luo, P., Lower and upper bounds of Dirichlet eigenvalues for totally characteristic degenerate elliptic operators, Sci. China Math., 57, 2235-2246 (2014) · Zbl 1327.35269
[10] Chen, H.; Wei, Y.; Zhou, B., Existence of solutions for degenerate elliptic equations with singular potential on singular manifolds, Math. Nachr., 258, 1370-1384 (2012) · Zbl 1250.58011
[11] Chen, H.; Zhou, Y., Lower bounds of eigenvalues for a class of bi-subelliptic operators, J. Differential Equations, 262, 5860-5879 (2017) · Zbl 1516.35278
[12] Chou, K.; Geng, D., Asymptotics of positive solutions for a biharmonic equation involving critical exponent, Differential Integral Equations, 13, 921-940 (2000) · Zbl 0977.35043
[13] Coriasco, S.; Schrohe, E.; Seiler, J., Differential operators on conic manifolds: maximal regularity and parabolic equations, Bull. Soc. Roy. Sci. Liège, 70, fasc. 4-5-6, 207-229 (2001) · Zbl 1010.58022
[14] Coriasco, S.; Schrohe, E.; Seiler, J., Bounded H-calculus for differential operators on conic manifolds with boundary, Comm. Partial Differential Equations, 32, 2, 229-255 (2007) · Zbl 1116.58020
[15] Coriasco, S.; Schrohe, E.; Seiler, J., Realizations of differential operators on conic manifolds with boundary, Ann. Global Anal. Geom., 31, 223-285 (2007) · Zbl 1116.58019
[16] Deng, Y.; Li, Y., Regularity of the solutions for nonlinear biharmonic equations in \(\mathbb{R}^N\), Acta Math. Sci. Ser., 29, 1469-1480 (2009) · Zbl 1212.35175
[17] Deng, Y.; Yang, J., Existence of multiple solutions and bifurcation for critical semilinear biharmonic equations, Systems Sci. Math. Sci., 8, 319-326 (1995) · Zbl 0852.35046
[18] Dreher, M.; Witt, I., Edge Sobolev spaces and weakly hyperbolic equations, Ann. Mat. Pura Appl., 180, 4, 451-482 (2002) · Zbl 1223.35240
[19] Egorov, J. V.; Schulze, B. W., (Pseudo-Differential Operators, Singularities, Applications, Operator Theory. Pseudo-Differential Operators, Singularities, Applications, Operator Theory, Advances and Applications, vol. 93 (1997), Birkhöuser: Birkhöuser Basel) · Zbl 0877.35141
[20] Ezzat, S. N.; Charles, A. S.; Yang, J., Critical semilinear biharmonic equations in \(\mathbb{R}^N\), Proc. Roy. Soc. Edinburgh, 121A, 139-148 (1992) · Zbl 0779.35044
[21] Fan, H.; Liu, X., Multiple positive solutions for degenerate elliptic equations with critical cone Sobolev exponents on singular manifolds, Electron. J. Differential Equations, 181, 1-22 (2013) · Zbl 1291.58010
[22] Fan, H.; Liu, X., Existence results for degenerate elliptic equations with critical cone Sobolev exponents, Acta Math. Sci. Ser., 34, 1907-1921 (2014) · Zbl 1340.35069
[23] Gazzola, F.; Grunau, H. C.; Sweers, G., (Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains. Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, vol. 1991 (2010), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1239.35002
[24] Guo, Z.; Wei, J.; Zhou, F., Singular radial entire solutions and weak solutions with prescribed singular set for a biharmonic equation, J. Differential Equations, 263, 1188-1224 (2017) · Zbl 1386.31005
[25] Hassell, A.; Mazzeo, R.; Melrose, R. B., A signature formula for manifolds with corners of codimension two, Topology, 36, 1055-1075 (1997) · Zbl 0883.58038
[26] Huang, Z.; Liu, X., Existence theorem for a class of semilinear totally characteristic elliptic equations involving supercritical cone Sobolev exponents, Comm. Pure Appl. Anal., 18, 3201-3216 (2019) · Zbl 1481.35222
[27] Kondratev, V. A., Boundary value problems for elliptic equations in domains with conical points, Tr. Most. Mat. Obs., 16, 209-292 (1967) · Zbl 0162.16301
[28] Lai, B. S.; Ye, D., Remarks on entire solutions for two fourth-order elliptic problems, Proc. Edinb. Math. Soc., 59, 777-786 (2016) · Zbl 1372.35117
[29] Lesch, M., (Differential Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods. Differential Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods, Teubner-Texte für Mathematik, vol. 136 (1997), Teubner-Verlag: Teubner-Verlag Leipig) · Zbl 1156.58302
[30] Liu, X.; Zhang, S., Multiple positive solutions for semi-linear elliptic systems involving sign-changing weight on manifolds with conical singularities, J. Pseudo-Differ. Oper. Appl., 7, 451-471 (2016) · Zbl 1379.58007
[31] R.B. Melrose, Pseudodifferential operators, corners and singular limits, in: Proc. Int. Cong. Math., 1991, pp. 217-234. · Zbl 0743.58033
[32] Melrose, R. B.; Vasy, A.; Wunsch, J., Propagation of singularities for the wave equation on edge manifolds, Duke Math. J., 144, 109-193 (2008) · Zbl 1147.58029
[33] Melrose, R. B.; Wunsch, J., Singularities and the wave equation on conic spaces, Geom. Anal. Appl., 39, 170-182 (2001) · Zbl 1122.58302
[34] Melrose, R. B.; Wunsch, J., Propagation of singularities for the wave equation on conic manifolds, Invent. Math., 156, 235-299 (2004) · Zbl 1088.58011
[35] Rabinowitz, P. H., (Minimax Methods in Critical Points Theory with Applications to Differential Equation. Minimax Methods in Critical Points Theory with Applications to Differential Equation, CBMS Reg. Conf. Ser. Math., vol. 65 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0609.58002
[36] Roidos, N., The Swift-Hohenberg equation on conic manifolds, J. Math. Anal. Appl., 481, 2, Article 123491 pp. (2020) · Zbl 1423.35429
[37] Roidos, N.; Schrohe, E., The Cahn-Hilliard equation and the Allen-Cahn equation on manifolds with conical singularities, Comm. Partial Differential Equations, 38, 5, 925-943 (2013) · Zbl 1272.58013
[38] Roidos, N.; Schrohe, E., Bounded imaginary powers of cone differential operators on higher order Mellin-Sobolev spaces and applications to the Cahn-Hilliard equation, J. Differential Equations, 257, 611-637 (2014) · Zbl 1431.35219
[39] Schrohe, E.; Seiler, J., Ellipticity and invertibility in the cone algebra on \(L_p\)-Sobolev spaces, Integral Equations Operator Theory, 41, 93-114 (2001) · Zbl 0992.58010
[40] Schulze, B. W., Boundary Value Problems and Singular Pseudo-Differential Operators (1998), J. Wiley: J. Wiley Chichester · Zbl 0907.35146
[41] Seiler, J., (The Cone Algebra and a Kernel Characterization of Green Operators, Approaches to Singular Analysis (Berlin, 1999). The Cone Algebra and a Kernel Characterization of Green Operators, Approaches to Singular Analysis (Berlin, 1999), Oper. Theory Adv. Appl., vol. 125 (2001), Birkhäuser: Birkhäuser Basel), 1-29 · Zbl 0994.35128
[42] Willem, M., Minimax Theorem (1996), Birkhäuser: Birkhäuser Boston · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.