×

Periodic solutions of the \(N\)-preys and \(M\)-predators model with variable rates on time scales. (English) Zbl 1459.34188

Summary: In this paper, we establish the existence of periodic solution of a delayed predator-prey model with \(M\)-predators and \(N\)-preys over the time scales. We derive sufficient conditions for the existence of a periodic solution with the help of continuation theorem of coincidence degree theory. At the end, we give an example with numerical simulations to illustrate our analytical findings.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
34N05 Dynamic equations on time scales or measure chains
92D25 Population dynamics (general)
47N20 Applications of operator theory to differential and integral equations
34K13 Periodic solutions to functional-differential equations
Full Text: DOI

References:

[1] Agarwal, R. P., Difference equations and inequalities: Theory, method and applications monographs and textbooks in pure and applied mathematics (2000), New York: Springer, New York · Zbl 0952.39001
[2] S. Alam, S. Abbas, and J. J. Nieto, Periodic solutions of a non-autonomous Leslie-gower predator-prey model with non-linear type prey harvesting on time scales, Differ. Equ. Dyn. Syst., (2015), 1-11. · Zbl 1431.34097
[3] Ai-lian, L., Boundedness and exponential stability of solution to dynamic equations on time scales, Electron. J. Differential Equations, 2006, 12, 1-14 (2006)
[4] Atici, F. M.; Biles, D. C.; Lebedinsky, A., An application of time scales to economics, Math. Comput. Model., 43, 7, 718-726 (2006) · Zbl 1187.91125
[5] Bohner, M.; Peterson, A., Dynamic equations on time scales: An introduction with applications (2001), Boston, MA: Birkhauser, Boston, MA · Zbl 0978.39001
[6] Bohner, M.; Peterson, A., Advances in dynamic equations on time scales (2003), Boston: Birkhäuser, Boston · Zbl 1025.34001
[7] M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science and Business Media, (2012). · Zbl 0978.39001
[8] Bohner, M.; Fan, M.; Zhang, J., Existence of periodic solutions in predator prey and competition dynamic systems, Nonlinear Anal. RWA., 7, 5, 1193-1204 (2006) · Zbl 1104.92057
[9] Chen, F., Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems, Appl. Math. Comput., 182, 1, 3-12 (2006) · Zbl 1113.92061
[10] Christiansen, F. B.; Fenchel, T. M., Theories of populations in biological communities, Lecture Notes in Ecological Studies, Springer-Verlag, Berlin, 20, 1-36 (1977) · Zbl 0354.92025
[11] Fan, M.; Wang, K., Periodicity in a delayed ratio-dependent predator-prey system, J. Math. Anal. Appl., 262, 179-190 (2001) · Zbl 0994.34058
[12] H. I. Freedman, Deterministic mathematical models in population, New York, Ecology, (1980). · Zbl 0448.92023
[13] Gaines, R. E.; Mawhin, J. L., Coincidence degree and nonlinear differential equations (1977), Berlin, Germany: Springer, Berlin, Germany · Zbl 0339.47031
[14] Hilger, S., Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18, 1, 18-56 (1990) · Zbl 0722.39001
[15] Ji, C.; Jiang, D.; Shi, N., Analysis of a predator prey model with modified Leslie-Gower and Hollingtype II schemes with stochastic perturbation, J. Math. Anal. Appl., 359, 2, 482-498 (2009) · Zbl 1190.34064
[16] S. Keller, Asymptotisches Verhalten invarianter Faserbndel bei Diskretisierung und Mittelwertbildung im Rahmen der Analysis auf Zeitskalin, PhD thesis, Universität Augsburg, (1999).
[17] Li, Y., Periodic solutions of a periodic delay predator-prey system, Proc. Amer. Math. Soc., 127, 5, 1331-1335 (1999) · Zbl 0917.34057
[18] Ma, Z.; Wendi, W., Asymptotic behavior of predator-prey system with time dependent coefficients, Appl. Anal., 34, 79-90 (1989) · Zbl 0658.34044
[19] A. Sirma and S. Sevgin, A note on coincidence degree theory, Hindawi Publishing Corporation, Abstr. Appl. Anal., 2012 (2012), Article ID 370946 18. · Zbl 1272.47069
[20] Wang, D., Multiple positive periodic solutions for an n-species competition predator-prey system on time scales, J. Appl. Math. Comput., 42, 1, 259-281 (2013) · Zbl 1300.34205
[21] Wen, X. Z., Global attractivity of a positive periodic solution of a multispecies ecological competition predator delay system, Acta Math. Sinica., 45, 1, 83-92 (2002) · Zbl 1018.34072
[22] Y. H. Xia, X. Gu, P. J. Y. Wong, and S. Abbas, Application of Mawhin’s coincidence degree and matrix spectral theory to a delayed system, Abstr. Appl. Anal., 2012 (2012), Article ID 940287 19. · Zbl 1258.34115
[23] Yang, P.; Rui, X., Global attractivity of the periodic Lotka-Volterra system, J. Math. Anal. Appl., 233, 1, 221-232 (1999) · Zbl 0973.92039
[24] H. Yange, Y. Xiaojie, and H. Yong, Periodic solutions to a predator-prey system on time scales with Beddington-DeAngelis functional response and diffusion, (Chinese) J. South China NormalUniv. Natur. Sci. Ed., (2010), 19-26.
[25] Zhang, B. B.; Fan, M., A remark on the application of coincidence degree to periodicity of dynamic equations on time scales, J. Northeast Normal Univ., 39, 1-3 (2007) · Zbl 1173.39303
[26] Zhang, R. Y.; Wang, Z. C.; Chen, Y.; Wu, J., Periodic solutions of a single species discrete population model with periodic harvest/stock, Comput. Math. Appl., 39, 1-2, 77-90 (2000) · Zbl 0970.92019
[27] Zhang, Z.; Hou, Z., Existence of four positive periodic solutions for a ratio-dependent predatorprey system with multiple exploited or harvesting terms, Nonlinear Anal. RWA., 11, 3, 1560-1571 (2010) · Zbl 1198.34081
[28] Zhonghua, L.; Lansun, C., Global asymptotic stability of the periodic Lotka-Volterra system with two-predator and one-prey, Appl. Math. J. Chinese Univ. Ser. B., 10, 3, 267-274 (1995) · Zbl 0840.34036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.