×

Chebyshev inequality for q-integrals. (English) Zbl 1459.28015

Summary: Let \(f, g\) be two comonotonic functions on the unit interval. The classical Chebyshev inequality states that the product of the integrals of \(f\) and \(g\) is a lower bound of the integral of the product of \(f\) and \(g\). This study proves a Chebyshev inequality on an abstract space \(X\) for q-integral, which was recently introduced by D. Dubois et al. as a generalization of the Sugeno integral as well as the seminormed integral. It also proves a related inequality for q-cointegrals. Our results generalize previous ones obtained in the framework of Sugeno integral as well as seminormed fuzzy integrals.

MSC:

28E10 Fuzzy measure theory
26D15 Inequalities for sums, series and integrals
Full Text: DOI

References:

[1] Agahi, H.; Mesiar, R.; Ouyang, Y., New general extensions of Chebyshev type inequalities for Sugeno integrals, Int. J. Approx. Reason., 51, 135-140 (2009) · Zbl 1196.28026
[2] Agahi, H.; Mesiar, R.; Ouyang, Y., General Minkowski type inequalities for Sugeno integrals, Fuzzy Sets Syst., 161, 708-715 (2010) · Zbl 1183.28027
[3] Beesack, P. R.; Pečrić, J. E., Integral inequalities of Čebyšev type, J. Math. Anal. Appl., 111, 643-659 (1985) · Zbl 0582.26005
[4] Choquet, G., Theory of capacities, Ann. Inst. Fourier, 5, 131-295 (1953) · Zbl 0064.35101
[5] Dong, Y.; Li, C.; Herrera, F., Connecting the linguistic hierarchy and the numerical scale for the 2-tuple linguistic model and its use to deal with hesitant unbalanced linguistic information, Inf. Sci., 367-368, 259-278 (2016) · Zbl 1428.68297
[6] Dubois, D.; Prade, H.; Rico, A., Residuated variants of Sugeno integrals: towards new weighting schemes for qualitative aggregation methods, Inf. Sci., 329, 765-781 (2016) · Zbl 1390.68648
[7] Dubois, D.; Prade, H.; Rico, A.; Teheux, B., Generalized qualitative Sugeno integrals, Inf. Sci., 415-416, 429-445 (2017) · Zbl 1435.68326
[8] Durante, F.; Sempi, C., Semicopulae, Kybernetika, 41, 315-328 (2005) · Zbl 1249.26021
[9] Klement, E. P.; Mesiar, R.; Pap, E., A universal integral as common frame for Choquet and Sugeno integral, IEEE Trans. Fuzzy Syst., 18, 1, 178-187 (2010)
[10] Fink Jodeit, A. M.; Max, J. R., On Chebyshev’s other inequality, (Inequalities in Statistics and Probability. Inequalities in Statistics and Probability, IMS Lecture Notes-Monograph Series, vol. 5 (1984)), 115-120
[11] Flores-Franulič, A.; Román-Flores, H., A Chebyshev type inequality for fuzzy integrals, Appl. Math. Comput., 190, 1178-1184 (2007) · Zbl 1129.26021
[12] Fodor, J. C.; Roubens, M., Fuzzy Preference Modelling and Multicriteria Decision Support (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0827.90002
[13] Girotto, B.; Holzer, S., Chebyshev type inequality for Choquet integral and comonotonicity, Int. J. Approx. Reason., 52, 1118-1123 (2011) · Zbl 1229.28028
[14] Halaš, R.; Mesiar, R.; Pócs, J., A new characterization of the discrete Sugeno integral, Inf. Fusion, 000, 1-3 (2015)
[15] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities (1934), Cambridge University Press: Cambridge University Press New York · JFM 60.0169.01
[16] Llamazares, B., Constructing Choquet integral-based operators that generalize weighted means and owa operators, Inf. Fusion, 23, 131-138 (2015)
[17] Mesiar, R.; Ouyang, Y., General Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets Syst., 160, 58-64 (2009) · Zbl 1183.28035
[18] Ouyang, Y.; Fang, J.; Wang, L., Fuzzy Chebyshev type inequality, Int. J. Approx. Reason., 48, 829-835 (2008) · Zbl 1185.28025
[19] Ouyang, Y.; Mesiar, R., On the Chebyshev type inequality for seminormed fuzzy integral, Appl. Math. Lett., 22, 1810-1815 (2009) · Zbl 1185.28026
[20] Ouyang, Y.; Mesiar, R., Sugeno integral and the comonotone commuting property, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 17, 465-480 (2009) · Zbl 1178.28031
[21] Ouyang, Y.; Mesiar, R.; Li, J., On the comonotonic-⋆-property for Sugeno integral, Appl. Math. Comput., 211, 450-458 (2009) · Zbl 1175.28011
[22] Ouyang, Y.; Mesiar, R.; Agahi, H., An inequality related to Minkowski type for Sugeno integrals, Inf. Sci., 180, 2793-2801 (2010) · Zbl 1193.28016
[23] Özkan, U. M.; Sarikaya, M. Z.; Yildirim, H., Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 21, 993-1000 (2008) · Zbl 1168.26316
[24] Román-Flores, H.; Flores-Franulič, A.; Chalco-Cano, Y., A Jensen type inequality for fuzzy integrals, Inf. Sci., 177, 3192-3201 (2007) · Zbl 1127.28013
[25] Simonovits, A., Three economic applications of Chebyshev’s algebraic inequality, Math. Soc. Sci., 30, 207-220 (1995) · Zbl 0885.90028
[26] Suárez García, F.; Gil Álvarez, P., Two families of fuzzy integrals, Fuzzy Sets Syst., 18, 67-81 (1986) · Zbl 0595.28011
[27] Sugeno, M., Theory of Fuzzy Integrals and Its Applications (1974), Tokyo Institute of Technology, Ph.D. thesis
[28] Wagener, A., Chebyshev’s algebraic inequality and comparative statics under uncertainty, Math. Soc. Sci., 52, 217-221 (2006) · Zbl 1142.60320
[29] Wang, Z.; Klir, G. J., Generalized Measure Theory (2009), Springer: Springer New York · Zbl 1184.28002
[30] Yager, R. R., On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. Syst. Man Cybern., 18, 183-190 (1988) · Zbl 0637.90057
[31] Yager, R. R.; Alajlan, N., A generalized framework for mean aggregation: toward the modeling of cognitive aspects, Inf. Fusion, 17, 65-73 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.