×

Parallel algorithms for successive convolution. (English) Zbl 1458.65122

The authors of the work under review, propose hybrid parallel algorithms that can handle a wide class of linear as well as nonlinear partial differential equations. In order to enable parallel simulations on distributed systems, a set of conditions that use available wave speed, either in conjunction with, or without diffusivity information, together with the size of the sub-domains (to limit the communication through an adjustment of the time step), is derived. In this frame work, boundary conditions are enforced across sub-domains in the decomposition. Results presented for two-dimensional examples consisting of linear advection, linear diffusion, and a nonlinear Hamilton-Jacobi equation, exhibit the adaptability of the methods in addressing qualitatively different partial differential equations.

MSC:

65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
65R20 Numerical methods for integral equations

Software:

RAJA; MOLT; Kokkos

References:

[1] Christlieb, A.; Guo, W.; Jiang, Y., A kernel-based high order “explicit” unconditionally stable scheme for time dependent Hamilton-Jacobi equations, J. Comput. Phys., 379, 214-236 (2019) · Zbl 07581570 · doi:10.1016/j.jcp.2018.11.037
[2] Christlieb, A.; Guo, W.; Jiang, Y.; Yang, H., Kernel based high order “explicit” unconditionally-stable scheme for nonlinear degenerate advection-diffusion equations, J. Sci. Comput., 82:52, 3, 1-29 (2020) · Zbl 1472.65107
[3] Christlieb, A.; Sands, W.; Yang, H., A kernel-based explicit unconditionally stable scheme for hamilton-jacobi equations on nonuniform meshes, J. Comput. Phys., 415, 1-25 (2020) · Zbl 1441.65084 · doi:10.1016/j.jcp.2020.109543
[4] Edwards, HC; Trott, CR; Sunderland, D., Kokkos: enabling manycore performance portability through polymorphic memory access patterns, J. Parallel Distrib. Comput., 74, 3202-3216 (2014) · doi:10.1016/j.jpdc.2014.07.003
[5] Causley, M.; Christlieb, A.; Ong, B.; Van Groningen, L., Method of lines transpose: an implicit solution to the wave equation, Math. Comput., 83, 290, 2763-2786 (2014) · Zbl 1307.65122 · doi:10.1090/S0025-5718-2014-02834-2
[6] Causley, MF; Cho, H.; Christlieb, AJ; Seal, DC, Method of lines transpose: high order l-stable O(N) schemes for parabolic equations using successive convolution, SIAM J. Numer. Anal., 54, 3, 1635-1652 (2016) · Zbl 1339.65199 · doi:10.1137/15M1035094
[7] Causley, M.; Cho, H.; Christlieb, A., Method of lines transpose: energy gradient flows using direct operator inversion for phase-field models, SIAM J. Sci. Comput., 39, 5, B968-B992 (2017) · Zbl 1407.65155 · doi:10.1137/16M1104123
[8] Cheng, Y.; Christlieb, AJ; Guo, W.; Ong, B., An asymptotic preserving maxwell solver resulting in the darwin limit of electrodynamics, J. Sci. Comput., 71, 3, 959-993 (2017) · Zbl 1372.78023 · doi:10.1007/s10915-016-0328-0
[9] Christlieb, A.; Guo, W.; Jiang, Y., A weno-based method of lines transpose approach for vlasov simulations, J. Comput. Phys., 327, 337-367 (2016) · Zbl 1422.65432 · doi:10.1016/j.jcp.2016.09.048
[10] Gottlieb, S.; Shu, C-W; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[11] Salazar, A.; Raydan, M.; Campo, A., Theoretical analysis of the exponential transversal method of lines for the diffusion equation, Numer. Methods Partial Differ. Equ., 16, 1, 30-41 (2000) · Zbl 0953.65063 · doi:10.1002/(SICI)1098-2426(200001)16:1<30::AID-NUM3>3.0.CO;2-V
[12] Schemann, M.; Bornemann, FA, An adaptive rothe method for the wave equation, Comput. Vis. Sci., 1, 3, 137-144 (1998) · Zbl 0915.65105 · doi:10.1007/s007910050013
[13] Biros, G., Ying, L., Zorin, D.: An embedded boundary integral solver for the unsteady incompressible Navier-Stokes equations (preprint) (2002)
[14] Biros, G.; Ying, L.; Zorin, D., A fast solver for the stokes equations with distributed forces in complex geometries, J. Comput. Phys., 193, 317-348 (2004) · Zbl 1047.76065 · doi:10.1016/j.jcp.2003.08.011
[15] Chiu, S-H; Moore, MNJ; Quaife, B., Viscous transport in eroding porous media, J. Fluid Mech., 893, A3 (2020) · Zbl 1460.76745 · doi:10.1017/jfm.2020.228
[16] Kropinski, MCA; Quaife, BD, Fast integral equation methods for rothe’s method applied to the isotropic heat equation, Comput. Math. Appl., 61, 2436-2446 (2011) · Zbl 1221.65279 · doi:10.1016/j.camwa.2011.02.024
[17] Quaife, BD; Moore, MNJ, A boundary-integral framework to simulate viscous erosion of a porous medium, J. Comput. Phys., 375, 1-21 (2018) · Zbl 1416.76309 · doi:10.1016/j.jcp.2018.07.037
[18] Wang, H.; Lei, T.; Li, J.; Huang, J.; Yao, Z., A parallel fast multipole accelerated integral equation scheme for 3d stokes equations, Int. J. Numer. Meth. Eng., 70, 812-839 (2007) · Zbl 1194.76221 · doi:10.1002/nme.1910
[19] Ying, L.; Biros, G.; Zorin, D., A high-order 3d boundary integral equation solver for elliptic pdes in smooth domains, J. Comput. Phys., 219, 247-275 (2006) · Zbl 1105.65115 · doi:10.1016/j.jcp.2006.03.021
[20] Saad, Y.; Schultzn, MH, Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[21] Bruno, OP; Lyon, M., High-order unconditionally stable fc-ad solvers for general smooth domains i. basic elements, J. Comput. Phys., 229, 2009-2033 (2010) · Zbl 1185.65184 · doi:10.1016/j.jcp.2009.11.020
[22] Bruno, OP; Lyon, M., High-order unconditionally stable fc-ad solvers for general smooth domains ii. elliptic, parabolic and hyperbolic pdes. theoretical considerations, J. Comput. Phys., 229, 3358-3381 (2010) · Zbl 1185.65184 · doi:10.1016/j.jcp.2009.11.020
[23] Douglas, J. Jr, On the numerical integration of \(\partial_{xx}U + \partial_{yy}U = \partial_tU\) by implicit methods, J. Soc. Ind. Appl. Math., 3, 42-65 (1955) · Zbl 0067.35802 · doi:10.1137/0103004
[24] Douglas, J. Jr, Alternating direction methods for three space variables, Numer. Math., 3, 41-63 (1962) · Zbl 0104.35001 · doi:10.1007/BF01386295
[25] Peaceman, DW; Rachford, HH Jr, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3, 28-41 (1955) · Zbl 0067.35801 · doi:10.1137/0103003
[26] Albin, N.; Bruno, OP, A spectral fc solver for the compressible navier-stokes equations in general domains i: Explicit time-stepping, J. Comput. Phys., 230, 6248-6270 (2011) · Zbl 1419.76488 · doi:10.1016/j.jcp.2011.04.023
[27] Anderson, TG; Bruno, OP; Lyon, M., High-order, dispersionless “fast-hybrid” wave equation solver . part i: \( \cal{O}(1)\) sampling cost via incident-field windowing and recentering, SIAM J. Sci. Comput., 42, 1348-1379 (2020) · Zbl 1447.65108 · doi:10.1137/19M1251953
[28] Causley, MF; Christlieb, AJ, Higher order a-stable schemes for the wave equation using a successive convolution approach, SIAM J. Numer. Anal., 52, 1, 220-235 (2014) · Zbl 1303.65078 · doi:10.1137/130932685
[29] Causley, M. F., Christlieb, A. J., Guclu, Y., Wolf, E.: Method of lines transpose: A fast implicit wave propagator. arXiv preprint arXiv:1306.6902, (2013)
[30] Shu, C-W, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 1, 82-126 (2009) · Zbl 1160.65330 · doi:10.1137/070679065
[31] Hornung, R.D., Keasler, J.A.: The raja portability layer: Overview and status. Lawrence Livermore National Laboratory (LLNL), Livermore. Tech. Rep. (2014). doi:10.2172/1169830
[32] Grete, P., Glines, F. W., O’Shea, B. W.: K-athena: A performance portable structured grid finite volume magnetohydrodynamics code (2019). arXiv: 1905.04341 [cs.DC]
[33] White, CJ; Stone, JM; Gammie, CF, An extension of the athena++ code framework for grmhd based on advanced riemann solvers and staggered-mesh constrained transport, Astrophys. J. Suppl., 225, 2 (2016) · doi:10.3847/0067-0049/225/2/22
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.