×

Souriau exponential map algorithm for machine learning on matrix Lie groups. (English) Zbl 1458.65043

Nielsen, Frank (ed.) et al., Geometric science of information. 4th international conference, GSI 2019, Toulouse, France, August 27–29, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11712, 85-95 (2019).
Summary: Jean-Marie Souriau extended Urbain Jean Joseph Leverrier algorithm to compute characteristic polynomial of a matrix in 1948. This Souriau algorithm could be used to compute exponential map of a matrix that is a challenge in Lie group machine learning. Main property of Souriau exponential map numerical scheme is its scalability with highly parallelization.
For the entire collection see [Zbl 1428.94016].

MSC:

65F18 Numerical solutions to inverse eigenvalue problems
15A16 Matrix exponential and similar functions of matrices
Full Text: DOI

References:

[1] Souriau, J-M, Une méthode pour la décomposition spectrale et l’inversion des matrices, CRAS, 227, 2, 1010-1011, 1948 · Zbl 0034.15801
[2] Souriau, J.-M.: Calcul Linéaire. EUCLIDE, Introduction aux études Scientifiques, vol. 1. Presses Universitaires de France, Paris (1959) · Zbl 0086.01501
[3] Souriau, J.-M.; Vallée, C.; Réaud, K.; Fortuné, D.: Méthode de Le Verrier-Souriau et équations différentielles linéaires. CRAS s. IIB Mech. 328(10), 773-778 (2000) · Zbl 1076.74523
[4] Souriau, J.-M.: Grammaire de la Nature. Private publication (2007)
[5] Thomas, F.: Nouvelle méthode de résolution des équations du mouvement de systèmes vibratoires linéaire, discrets, DEA Mécanique, université de Poitiers (1998)
[6] Réaud, K., Fortuné, D., Prudhorffne, S. Vallée, C.: Méthode d’étude des vibrations d’un système mécanique non basée sur le calcul de ses modes propres. XVème Congrès français de Mécanique, Nancy, (2001)
[7] Champion-Réaud, K.: Méthode d’étude des vibrations d’un système mécanique non basée sur le calcul de ses modes propres. SupAéro PhD (2002)
[8] Réaud, K., Vallée, Cl., Fortuné, D.: Détermination des vecteurs propres d’un système vibratoire par exploitation du concept de matrice adjuguée. 6ème Colloque national en calcul des structures, Giens (2003)
[9] Champion-Réaud, K.; Vallée, C.; Fortuné, D. Champion-Réaud, J.L.: Extraction des pulsations et formes propres de la réponse d’un système vibratoire. 16ème Congrès Français de Mécanique, Nice, (2003)
[10] Vallée, C.; Fortuné, D.; Champion-Réaud, K., A general solution of a linear dissipative oscillatory system avoiding decomposition into eigenvectors, J. Appl. Math. Mech., 69, 837-843, 2005 · Zbl 1100.70521 · doi:10.1016/j.jappmathmech.2005.11.005
[11] Le Verrier, U.: Sur les variations séculaires des éléments des orbites pour les sept planètes principales. J. de Math. (1) 5, 230 (1840)
[12] Le Verrier, U., Variations séculaires des éléments elliptiques des sept planètes principales, I Math. Pures Appli., 4, 220-254, 1840
[13] Juhel, A.: Le Verrier et la première détermination des valeurs propres d’une matrice, Bibnum, Physique (2011)
[14] Tong, MD; Chen, WK, A novel proof of the Souriau-Frame-Faddeev algorithm, IEEE Trans. Autom. Control, 38, 1447-1448, 1993 · Zbl 0787.93045 · doi:10.1109/9.237666
[15] Faddeev, D. K.; Sominsky, I. S.: Problems in Higher Algebra, Problem 979. Mir Publishers, Moskow-Leningrad (1949)
[16] Frame, JS, A simple recursion formula for inverting a matrix, Bull. Amer. Math. Soc., 56, 1045, 1949
[17] Forsythe, GE; Straus, LW, The Souriau-Frame characteristic equation algorithm on a digital computer, J. Math. Phys. Stud. Appl. Math., 34, 1-4, 152-156, 1955 · Zbl 0068.10602
[18] Fadeev, D.K. Fadeeva, V.N.: Computational Methods of Linear Algebra (translated from Russian by R. C. Williams). W. H. Freeman and Co., San Francisco (1963)
[19] Greville, TNE, The Souriau-Frame algorithm and the Drazin pseudoinverse, Linear Algebr. Its Appl., 6, 205, 1973 · Zbl 0247.15004 · doi:10.1016/0024-3795(73)90021-9
[20] Downs, T., Some properties of the Souriau-frame algorithm with application to the inversion of rational matrices, SIAM J. on Applied Mathematics, 28, 2, 237-251, 1975 · Zbl 0294.65019 · doi:10.1137/0128019
[21] Csanky, L.: Almost parallel matrix inversion algorithms. SIAM 618-623 (1976) · Zbl 0353.68063
[22] Hartwig, RE, More on the Souriau-Frame algorithm and the Drazin inverse, SIAM J. Appl. Math., 31, 1, 42-46, 1976 · Zbl 0335.15008 · doi:10.1137/0131004
[23] Hou, S-H, A simple proof of the Leverrier-Faddeev characteristic polynomial algorithm, SIAM Rev., 40, 3, 706-709, 1998 · Zbl 0912.65035 · doi:10.1137/S003614459732076X
[24] Helmberg, G.; Wagner, P.; Veltkamp, G., On Faddeev-Leverrier’s method fort the computation of the characteristic polynomial of a matrix and of eigenvectors, Linear Algebra Its Appl., 185, 219-233, 1993 · Zbl 0770.65023 · doi:10.1016/0024-3795(93)90214-9
[25] Barnett, S., Leverrier’s algorithm: a new proof and extensions, SIAM J. Matrix Anal. Appl., 10, 551-556, 1989 · Zbl 0682.65022 · doi:10.1137/0610040
[26] Keller-Gehrig, W., Fast algorithms for the characteristic polynomial, Theor. Comput. Sci., 36, 309-317, 1985 · Zbl 0565.68041 · doi:10.1016/0304-3975(85)90049-0
[27] Preparata, F.; Et Sarwate, D., An improved parallel processor bound in fast matrix inversion, Inf. Process. Lett., 7, 3, 148-150, 1978 · Zbl 0373.65020 · doi:10.1016/0020-0190(78)90079-0
[28] Pernet, C.: Algèbre linéaire exacte efficace: le calcul du polynôme caractéristique, PhD Université Joseph Fourier, 27 (2006)
[29] Eriksen, P.S.: Geodesics connected with the fisher metric on the multivariate normal manifold. Technical report, 86-13; Inst. of Elec. Sys., Aalborg University (1986)
[30] Eriksen, P.S.: Geodesics connected with the Fisher metric on the multivariate normal manifold. In Proceedings of the GST Workshop, Lancaster, UK, 28-31 October 1987
[31] Moler, CB; van Loan, CF, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev., 20, 801-836, 2003 · Zbl 0395.65012 · doi:10.1137/1020098
[32] Hochbruck, M.; Lubich, C.; Selhofer, H., Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, 5, 1552-1574, 1998 · Zbl 0912.65058 · doi:10.1137/S1064827595295337
[33] Iserles, A.; Zanna, A., Efficient computation of the matrix exponential by generalized polar decompositions, SIAM J. Numer. Anal., 42, 5, 2218-2256, 2005 · Zbl 1084.65040 · doi:10.1137/S0036142902415936
[34] Celledoni, E.; Iserles, A., Approximating the exponential from a Lie algebra to a Lie group, Math. Comput., 69, 1457-1480, 2000 · Zbl 0956.65009 · doi:10.1090/S0025-5718-00-01223-0
[35] Celledoni, E.; Iserles, A., Methods for the approximation of the matrix exponential in a Lie-algebraic setting, IMA J. Numer. Anal., 21, 463-488, 2001 · Zbl 1009.65040 · doi:10.1093/imanum/21.2.463
[36] Leite, FS; Crouch, P., Closed forms for the exponential mapping on matrix Lie groups based on Putzer’s method, J. Math. Phys., 40, 7, 3561-3568, 1999 · Zbl 0942.22009 · doi:10.1063/1.532908
[37] Lewis, D.; Olver, PJ, Geometric integration algorithms on homogeneous manifolds’, Found. Comput. Math., 2, 363-392, 2002 · Zbl 1018.22017 · doi:10.1007/s102080010028
[38] Munthe-Kaas, H.; Quispel, RGW; Zanna, A., Generalized polar decompositions on Lie groups with involutive automorphisms, Found. Comput. Math., 1, 3, 297-324, 2001 · Zbl 0980.22010 · doi:10.1007/s002080010012
[39] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29, 209-228, 1992 · Zbl 0749.65030 · doi:10.1137/0729014
[40] Zanna, A.: Recurrence relation for the factors in the polar decomposition on Lie groups. Technical report, Report no. 192, Dep. of Infor., Univ. of Bergen, Math. Comp. (2000)
[41] Zanna, A.; Munthe-Kaas, HZ, Generalized polar decompositions for the approximation of the matrix exponential’, SIAM J. Matrix Anal., 23, 3, 840-862, 2002 · Zbl 0999.65060 · doi:10.1137/S0895479800377551
[42] Nobari, E.; Hosseini, SM, A method for approximation of the exponential map in semidirect product of matrix Lie groups and some applications, J. Comput. Appl. Math., 234, 1, 305-315, 2010 · Zbl 1189.65081 · doi:10.1016/j.cam.2009.12.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.