×

Sparse Kalman filtering approaches to realized covariance estimation from high frequency financial data. (English) Zbl 1458.62245

Summary: Estimation of the covariance matrix of asset returns from high frequency data is complicated by asynchronous returns, market microstructure noise and jumps. One technique for addressing both asynchronous returns and market microstructure is the Kalman-Expectation-Maximization (KEM) algorithm. However the KEM approach assumes log-normal prices and does not address jumps in the return process which can corrupt estimation of the covariance matrix. In this paper we extend the KEM algorithm to price models that include jumps. We propose a sparse Kalman filtering approach to this problem. In particular we develop a Kalman Expectation Conditional Maximization algorithm to determine the unknown covariance as well as detecting the jumps. In order to promote a sparse estimate of the jumps,we consider both Laplace and the spike and slab jump priors. Numerical results using simulated data show that each of these approaches provide for improved covariance estimation relative to the KEM method in a variety of settings where jumps occur.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62M20 Inference from stochastic processes and prediction

Software:

astsa

References:

[1] Aravkin, A., Bell, B., Burke, J., Pilonetto, G.: An \[\ell_1\] ℓ1 Laplace robust Kalman smoother. IEEE Trans. Autom. Control 56(12), 2898-2911 (2011) · Zbl 1368.93755 · doi:10.1109/TAC.2011.2141430
[2] Aït-Sahalia, Y., Fan, J., Xiu, D.: High-frequency covariance estimates with noisy and asynchronous financial data. J. Am. Stat. Assoc. 105(492), 1504-1517 (2010) · Zbl 1388.62303 · doi:10.1198/jasa.2010.tm10163
[3] Aït-Sahalia, Y., Myklank, P., Zhang, L.: How often to sample a continuous-time process in the presence of market microstructure noise. Rev. Financ. Stud. 100, 1394-1411 (2005) · Zbl 1117.62461
[4] Bandi, F., Russell, J.: Separating microstructure noise from volatility. J. Financ. Econ. 79, 655-692 (2006) · doi:10.1016/j.jfineco.2005.01.005
[5] Barndorff-Nielsen, O., Hansen, P., Lunde, A., Shephard, N.: Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. J. Econom. 162, 149-169 (2011) · Zbl 1441.62599 · doi:10.1016/j.jeconom.2010.07.009
[6] Barry, C.B.: Portfolio analysis under uncertain means, variances and covariances. J. Finance 29, 515-522 (1974) · doi:10.1111/j.1540-6261.1974.tb03064.x
[7] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Imaging Sci. 2(1), 183-202 (2009) · Zbl 1175.94009 · doi:10.1137/080716542
[8] Bollerslev, T.: Modeling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH approach. Rev. Econ. Stat. 72, 498-505 (1990) · doi:10.2307/2109358
[9] Boudt, K., Croux, C., Laurent, S.: Outlyingness weighted covariation. J. Financ. Econom. 9(4), 657-684 (2011) · doi:10.1093/jjfinec/nbr003
[10] Boudt, K., Zhang, J.: Jump robust two time scale covariance estimation and realized volatility budgets. Quant. Finance 15(6), 1041-1054 (2015) · Zbl 1398.62283 · doi:10.1080/14697688.2012.741692
[11] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1-122 (2011) · Zbl 1229.90122 · doi:10.1561/2200000016
[12] Campbell, J., Lo, A., MacKinlay, A.C.: The Econometrics of Financial Markets. Princeton University Press, Princeton (1996) · Zbl 0927.62113
[13] Candès, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted \[\ell_1\] ℓ1 minimzation. J. Fourier Anal. Appl. 14, 877-905 (2008) · Zbl 1176.94014 · doi:10.1007/s00041-008-9045-x
[14] Chan, W., Maheu, J.: Conditional jump dynamics in stock market returns. J. Bus. Econ. Stat. 20(3), 377-389 (2002) · doi:10.1198/073500102288618513
[15] Corsi, F., Peluso, S., Audrino, F.: Missing in asynchronicity: a Kalman-EM approach for multivariate realized covariance estimation. J. Appl. Econom. 30(3), 377-397 (2015) · doi:10.1002/jae.2378
[16] DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus Naive diversification: how inefficient is the 1/n portfolio strategy? Rev. Financ. Stud. 22(5), 1915-1953 (2009) · doi:10.1093/rfs/hhm075
[17] Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1-38 (1977) · Zbl 0364.62022
[18] Fan, J., Li, Y., Yu, K.: Vast volatility matrix estimation using high frequency data for portfolio selection. J. Am. Stat. Assoc. 107(497), 412-428 (2012) · Zbl 1328.91266 · doi:10.1080/01621459.2012.656041
[19] Fan, J., Wang, Y.: Multi-scale jump and volatility analysis for high-frequency financial data. J. Am. Stat. Assoc. 102(480), 1349-1362 (2007) · Zbl 1332.62403 · doi:10.1198/016214507000001067
[20] Fink, D.: A compendium of conjugate priors. Technical Report, Montana State Univeristy (1997)
[21] Ghahramani, Z., Hinton, G.E.: Variational learning for switching state-space models. Neural Comput. 12(4), 963-996 (2000) · doi:10.1162/089976600300015619
[22] Goldstein, T., Osher, S.: The split Bregman method for \[\ell_1\] ℓ1 regularized problems. SIAM J. Imaging Sci. 2(2), 323-343 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[23] Jobson, J.D., Korkie, B.: Estimation for Markowitz efficient portfolios. J. Am. Stat. Assoc. 75, 544-554 (1980) · Zbl 0446.62047 · doi:10.1080/01621459.1980.10477507
[24] Karpoff, J.: The relation between price changes and trading volume: a survey. J. Financ. Quant. Anal. 22, 109-126 (1987) · doi:10.2307/2330874
[25] Liu, C., Tang, C.Y.: A quasi-maximum likelihood approach for integrated covariance matrix estimation with high frequency data. J. Econom. 180, 217-232 (2014) · Zbl 1293.91196 · doi:10.1016/j.jeconom.2014.01.008
[26] Lo, A., MacKinlay, A.C.: An econometric analysis of nonsynchronous trading. J. Econom. 45, 181-211 (1990) · Zbl 0712.62102 · doi:10.1016/0304-4076(90)90098-E
[27] Lunenberger, D., Ye, Y.: Linear and Nonlinear Programming. Addison-Wesley, New York (2008) · Zbl 1207.90003 · doi:10.1007/978-0-387-74503-9
[28] Maheu, J.M., McCurdy, T.H.: News arrival, jump dynamics, and volatility components for individual stock returns. J. Finance 59(2), 755-793 (2004) · doi:10.1111/j.1540-6261.2004.00648.x
[29] Mattingley, J., Boyd, S.: Real-time convex optimization in signal processing. IEEE Signal Process. Mag. 27, 50-61 (2010) · Zbl 1211.90170 · doi:10.1109/MSP.2010.936020
[30] Meng, X.L., Rubin, D.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267-278 (1993) · Zbl 0778.62022 · doi:10.1093/biomet/80.2.267
[31] Peluso, S., Corsi, F., Mira, A.: A Bayesian high-frequency estimator of the multivariate covariance of noisy and asynchronous returns. J. Financ. Econom. 13(3), 665-697 (2015) · doi:10.1093/jjfinec/nbu017
[32] Roll, R.: A simple implicit measure of the effective bid-ask spread in an efficient market. J. Finance 39(4), 1127-1139 (1984) · doi:10.1111/j.1540-6261.1984.tb03897.x
[33] Seeger, M.W.: Bayesian inference and optimal design for the sparse linear model. J. Mach. Learn. Res. 9, 759-813 (2008) · Zbl 1225.68213
[34] Shumway, R., Stoffer, D.: Time Series Analysis and its Applications with R Examples. Springer, Berlin (2011) · Zbl 1276.62054 · doi:10.1007/978-1-4419-7865-3
[35] Shumway, R.H., Stoffer, D.S.: An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal. 3(4), 253-264 (1982) · Zbl 0502.62085 · doi:10.1111/j.1467-9892.1982.tb00349.x
[36] Wu, C.F.: On the convergence properties of the EM algorithm. Ann. Stat. 11(1), 95-103 (1983) · Zbl 0517.62035 · doi:10.1214/aos/1176346060
[37] Zangwill, W.: Nonlinear Programming: A Unified Approach. Prentice-Hall, Upper Saddle River (1969) · Zbl 0195.20804
[38] Zhang, L.: Estimating covariation: Epps effect and microstructure noises. J. Econ. 160(1), 33-47 (2011) · Zbl 1441.62911 · doi:10.1016/j.jeconom.2010.03.012
[39] Zhang, M., Russel, J., Tsay, R.: Determinants of bid and ask quotes and implications for the cost of trading. J. Empir. Finance 15(4), 656-678 (2008) · doi:10.1016/j.jempfin.2007.12.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.