×

A hybrid method based on \(F\)-transform for robust estimators. (English) Zbl 1458.62080

Summary: Robust regression analysis is a stable method to fit a given dataset especially when the data set includes outliers. It has been developed with various approaches due to its practical usefulness and insensitivity to outliers. In this paper, we propose a new hybrid algorithm based on several robust methods combined with \(F\) (fuzzy)-transform to compare its performances with several robust methods. Some \(M\)-estimators such as \(L_1\), \(L_1 - L_2\) and Fair have been used as existing robust methods. \(L_2\), which is very sensitive to outliers, also has been used for comparison. Additionally, the Orthogonal distance regression (ODR) is introduced to enhance the deficiency of basic distance of error. To find the estimated parameters which minimize the objective functions, the Genetic Algorithm (GA) is used as an optimization algorithm. The performances are measured in RMSE, MAD and MAPE to compare their accuracies. Three examples are provided and the results show that the proposed hybrid methods are much more superior to existing robust methods such as \(L_1\), \(L_1 - L_2\) and Fair.

MSC:

62F35 Robustness and adaptive procedures (parametric inference)
62F10 Point estimation
62F86 Parametric inference and fuzziness
Full Text: DOI

References:

[1] Boggs, P. T.; Rogers, J. E., Orthogonal distance regression, Contemp. Math., 112, 183-193 (1990)
[2] Carvalho, F. A.T.; Lima Neto, E. A.; Ferreira, M. R.P., A robust regression method based on exponential-type kernel functions, Neurocomputing, 234, 58-74 (2017)
[3] Chachi, J.; Taheri, S. M.; Rezaee Pazhand, H., Suspended load estimation using \(L_1\)-fuzzy regression, \(L_2\)-fuzzy regression and MARS-fuzzy regression models, Hydrol. Sci. J., 61, 1489-1502 (2016)
[4] Chambers, H. F.; Korzeniowski, O. M.; Sande, M. A., Staphylococcus aureus endocarditis: clinical manifestations in addicts and nonaddicts, Medicine, 62, 170-177 (1983)
[5] Choi, S. H.; Buckley, J. J., Fuzzy regression using least absolute deviation estimators, Soft Comput., 12, 257-263 (2008)
[6] Di Martino, F.; Loia, V.; Sessa, S., Fuzzy transforms method in prediction data analysis, Fuzzy Sets Syst., 180, 146-163 (2011) · Zbl 1318.62284
[7] Diamond, P., Fuzzy least squares, Inf. Sci., 46, 141-157 (1988) · Zbl 0663.65150
[8] Ezekiel, M.; Fox, K. A., Methods of Correlation and Regression Analysis (1959), Wiley: Wiley N.Y. · Zbl 0086.35504
[9] Goldberg, D. E., Genetic Algorithms in Search. Optimization, and Machine Learning (1989), Addison-Wesley · Zbl 0721.68056
[10] Hampel, F.; Ronchetti, E.; Rousseeuw, P.; Stahel, W., Robust Statistics: The Approach Based on Influence Functions (1986), Wiley: Wiley N.Y. · Zbl 0593.62027
[11] Huber, P. J., Robust Statistics (1981), Wiley: Wiley New York · Zbl 0536.62025
[12] Huber, P. J., Robust Statistics (2009), John Wiley & Sons Inc. · Zbl 1276.62022
[13] Jung, H-. Y.; Yoon, J. H.; Choi, S. H., Fuzzy linear regression using rank transform method, Fuzzy Sets Syst., 274, 1, 97-108 (2015) · Zbl 06805471
[14] Kelkinnama, M.; Taheri, S. M., Fuzzy least-absolutes regression using shape preserving operations, Inf. Sci., 214, 105-120 (2012) · Zbl 1250.62038
[15] Kim, K. J.; Kim, D. H.; Choi, S. H., Least absolute deviation estimator in fuzzy regression, J. Appl. Math. Comput., 18, 649-656 (2005)
[16] Kim, H. K.; Yoon, J. H.; Li, Y., Asymptotic properties of least squares estimation with fuzzy observations, Inf. Sci., 178, 439-451 (2008) · Zbl 1128.62028
[17] Kim, I. K.; Lee, W. J.; Yoon, J. H.; Choi, S. H., Fuzzy regression model using trapezoidal fuzzy numbers for re-auction data, Int. J. Fuzzy Log. Intell. Syst., 16, 72-80 (2016)
[18] Lee, W.-J.; Jung, H.-Y.; Yoon, J. H.; Choi, S. H., Forecasting using F-transform based on bootstrap technique, (Proc. of 2014 IEEE International Conference on Fuzzy Systems (2014)), 513-516
[19] Meer, P.; Mintz, D.; Rosenfeld, A., Robust regression methods for computer vision: a review, Int. J. Comput. Vis., 6, 59-70 (1991)
[20] Montgomery, D. C.; Peck, E. A.; Vining, G. G., Introduction to Linear Regression Analysis (2012), John Wiley & Sons · Zbl 1274.62016
[21] Namdari, M.; Yoon, J. H.; Abadi, A.; Taheri, S. M.; Choi, S. H., Fuzzy logistic regression with least absolute deviations estimators, Soft Comput., 19, 4, 909-917 (2015)
[22] Novák, V.; Štěpnička, M.; Dvořák, A.; Perfilieva, I.; Pavliska, V., Analysis of seasonal time series using fuzzy approach, Int. J. Gen. Syst., 39, 305-328 (2010) · Zbl 1191.62162
[23] Perfilieva, I.; Haldeeva, E., Fuzzy transformation, (Proc. of the Joint 9th IFSA World Congress and 20th NAFIPS (2001)), 127-130
[24] Perfilieva, I.; Valášek, R., Fuzzy transforms in removing noise, (Reusch, B., Computational Intelligence, Theory and Applications. Advances in Soft Computing (2005)), 221-230
[25] Perfilieva, I., Fuzzy transforms: theory and applications, Fuzzy Sets Syst., 157, 993-1023 (2006) · Zbl 1092.41022
[26] Perfilieva, I.; Novák, V.; Dvořák, A., Fuzzy transform in the analysis of data, Int. J. Approx. Reason., 48, 36-46 (2008) · Zbl 1184.68421
[27] Perfilieva, I.; Yarushkina, N.; Afanasieva, T.; Romanov, A., Time series analysis using soft computing methods, Int. J. Gen. Syst., 42, 687-705 (2013) · Zbl 1278.62150
[28] Poch, J.; Villaescusa, I., Orthogonal distance regression: a good alternative to least squares for modeling sorption data, J. Chem. Eng. Data, 57, 490-499 (2012)
[29] Rousseeuw, P. J.; Yohai, V., Robust regression by means of S-estimators, robust and nonlinear time series analysis, Ser. Lect. Notes Stat., 26, 256-272 (1984) · Zbl 0567.62027
[30] Rousseeuw, P. J.; Leroy, A. M., Robust Regression and Outlier Detection (1987), Wiley · Zbl 0711.62030
[31] Štěpnička, M.; Dvořák, A.; Pavliska, V.; Vavříčková, L., Linguistic approach to time series modeling with the help of F-transform, Fuzzy Sets Syst., 180, 164-184 (2011) · Zbl 1239.62111
[32] Susanti, Y.; Pratiwi, H.; Sulistijowati, S.; Liana, T., M estimation, S estimation, and MM estimation in robust regression, Int. J. Pure Appl. Math., 91, 349-360 (2014) · Zbl 1288.62064
[33] Tanaka, H.; Uejima, S.; Asai, K., Linear regression analysis with fuzzy model, IEEE Trans. Syst. Man Cybern., 12, 903-907 (1982) · Zbl 0501.90060
[34] Troiano, L.; Kriplani, P., Supporting trading strategies by inverse fuzzy transform, Fuzzy Sets Syst., 180, 121-145 (2011) · Zbl 1241.91150
[35] Winegrad, S.; Weisberg, A.; McClellan, G., Are restoring forces important to relaxation?, Eur. Heart J., 1, 59-65 (1980)
[36] Yoon, J. H.; Choi, S. H., Fuzzy Least Squares Estimation with New Fuzzy Operations, (Advances in Intelligent Systems and Computing, vol. 190 (2013)), 193-202 · Zbl 06580234
[37] Yoon, J. H.; Jung, H.-Y.; Choi, S. H.; Lee, W. J., An application of F-transform to a regression model based on Theil’s method, (Proceedings of 2015 IEEE International Conference on Fuzzy Systems. Proceedings of 2015 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE (2015)), 1-20
[38] Yoon, J. H.; Choi, S. H.; Grzegorzewski, P., On Asymptotic Properties of the Multiple Fuzzy Least Squares Estimator, (Advances in Intelligent Systems and Computing, vol. 456 (2016)), 525-532
[39] Zhao, G.; Ma, Y., Robust nonparametric kernel regression estimator, Stat. Probab. Lett., 116, 72-79 (2016) · Zbl 1383.62105
[40] Zhao, W.; Lian, H.; Ma, S., Robust reduced-rank modeling via rank regression, J. Stat. Plan. Inference, 180, 1-12 (2017) · Zbl 1356.62056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.