×

Boundedness of Monge-Ampère singular integral operators on Besov spaces. (English) Zbl 1458.42013

In the first and the second part of this paper the authors give an introduction and preliminaries and historical remarks on Monge-Ampere singular integral operators with suitable theorems. In the third part of this paper they show the existence of the approximation to the identity with a suitable lemma. In the fourth part and the fifth part of the paper they give a Calderón-type reproducing formula for \(B_{p,\mathcal F}^{\alpha,q} \) and its dual and a basic property of Besov spaces with suitable theorems. In the sixth part of the paper they give the boundedness on \(B_{p,\mathcal F}^{\alpha,q} \) with a suitable lemma. This paper was written in very well manner.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B35 Function spaces arising in harmonic analysis

References:

[1] Caffarelli, LA; Gutiérrez, CE., Real analysis related to the Monge-Ampère equation, Trans Amer Math Soc, 348, 1075-1092 (1996) · Zbl 0858.35034 · doi:10.1090/S0002-9947-96-01473-0
[2] Caffarelli, LA., Some regularity properties of solutions of Monge-Ampère equation, Comm Pure Appl Math, XLIV, 965-969 (1991) · Zbl 0761.35028 · doi:10.1002/cpa.3160440809
[3] Caffarelli, LA., Boundary regularity of maps with convex potentials, Comm Pure Appl Math, XLV, 1141-1151 (1992) · Zbl 0778.35015 · doi:10.1002/cpa.3160450905
[4] Caffarelli, LA; Gutiérrez, CE., Properties of the solutions of the linearized Monge-Ampère equation, Amer J Math, 119, 423-465 (1997) · Zbl 0878.35039 · doi:10.1353/ajm.1997.0010
[5] Caffarelli, LA, Gutiérrez, CE.Singular integrals related to the Monge-Ampère equation. In: D’Atellis CA, Fernandez-Berdaguer EM, editors. Wavelet theory and harmonic analysis in applied sciences (Buenos Aires, 1995); Boston (MA): Appl. Numer. Harmon. Anal., Birkhäuser Boston; 1997, p. 3-13. · Zbl 0881.35034
[6] Incognito, A., Weak-type \(####\) inequality for the Monge-Ampère SIO’s, J Fourier Anal Appl, 7, 41-48 (2001) · Zbl 0988.42011 · doi:10.1007/s00041-001-0003-0
[7] Ding, Y.; Lin, C-C., Hardy spaces associated to the sections, Tôhoku Math J, 57, 147-170 (2005) · Zbl 1085.42014 · doi:10.2748/tmj/1119888333
[8] Lee, M-Y., The boundedness of Monge-Ampère singular integral operators, J Fourier Anal Appl, 18, 211-222 (2012) · Zbl 1242.42014 · doi:10.1007/s00041-011-9203-4
[9] Lin, C-C., Boundedness of Monge-Ampère singular integral operators acting on Hardy spaces and their duals, Trans Amer Math Soc, 368, 3075-3104 (2016) · Zbl 1337.42013 · doi:10.1090/tran/6397
[10] Calderón, AP., Intermediate spaces and interpolation, the complex method, Studia Math, 24, 113-190 (1964) · Zbl 0204.13703 · doi:10.4064/sm-24-2-113-190
[11] Frazier, M.; Jawerth, B.; Weiss, G., Littlewood-Paley theory and the study of function spaces, 79 (1991), Providence (RI): A.M.S., Providence (RI) · Zbl 0757.42006
[12] Peetre, J., New thoughts on Besov spaces, 1 (1976), Durham (NC): Duke University · Zbl 0356.46038
[13] Triebel, H., Theory of function spaces (1983), Basel: Birkhäuser Verlag, Basel · Zbl 0546.46028
[14] Triebel, H., Theory of function spaces, II (1992), Basel: Birkhäuser Verlag, Basel · Zbl 0763.46025
[15] Coifman, RR; Weiss, G., Analyse harmonique non-commutative sur certains espaces homogenes, 242 (1971), Berlin and New York: Springer-Verlag, Berlin and New York · Zbl 0224.43006
[16] Coifman, RR; Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull Amer Math Soc, 83, 569-645 (1977) · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[17] Nagel, A.; Stein, EM., On the product theory of singular integrals, Rev Mat Iberoamericana, 20, 531-561 (2004) · Zbl 1057.42016 · doi:10.4171/RMI/400
[18] Nagel, A.; Stein, EM., The \(####\)-complex on decoupled boundarise in \(####\), Ann Math, 164, 649-713 (2006) · Zbl 1126.32031 · doi:10.4007/annals.2006.164.649
[19] Macías, RA; Segovia, C., Lipschitz functions on spaces of homogeneous type, Adv Math, 33, 257-270 (1979) · Zbl 0431.46018 · doi:10.1016/0001-8708(79)90012-4
[20] Macías, RA; Segovia, C., A decomposition into atoms of distributions on spaces of homogeneous type, Adv Math, 33, 271-309 (1979) · Zbl 0431.46019 · doi:10.1016/0001-8708(79)90013-6
[21] David, G.; Journé, J-L; Semmes, S., Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev Mat Iberoamericana, 1, 1-56 (1985) · Zbl 0604.42014 · doi:10.4171/RMI/17
[22] Han, Y.; Sawyer, E., Littlewood-Paley theorem on space of homogeneous type and classical function spaces, Mem Amer Math Soc, 110, 530, 1-126 (1994) · Zbl 0806.42013
[23] Han, Y., Calderón-type reproducing formula and the Tb theorem, Rev Mat Iberoamericana, 10, 51-91 (1994) · Zbl 0797.42009 · doi:10.4171/RMI/145
[24] Han, Y., Plancherel-Pôlya type inequality on spaces of homogeneous type and its applications, Proc Amer Math Soc, 126, 3315-3327 (1998) · Zbl 0920.42011 · doi:10.1090/S0002-9939-98-04445-1
[25] Han, Y.; Lin, C-C., Embedding theorem on spaces of homogeneous type, J Fourier Anal Appl, 8, 291-307 (2002) · Zbl 1032.42024 · doi:10.1007/s00041-002-0014-5
[26] Han, Y.; Muller, D.; Yang, D., Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, Math Nachr, 279, 1505-1537 (2006) · Zbl 1179.42016 · doi:10.1002/mana.200610435
[27] Han, Y.; Muller, D.; Yang, D., A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Caratheodory spaces, Abstr Appl Anal, 2008, 250 (2008) · Zbl 1193.46018 · doi:10.1155/2008/893409
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.