×

A cellular Potts energy-based approach to analyse the influence of the surface topography on single cell motility. (English) Zbl 1457.92030

Summary: The surface shape is an important aspect to take into account to ensure the success of an implant. At the cellular scale level, the cell behaviour, especially its migration, is affected by the specificities of the surface of the substrate, such as the stiffness of the surface and its roughness topography. The latter has been shown to have a great impact on various cell mechanisms, such as the cell adhesion, migration, or proliferation. In fact, the mere presence of micro roughness leads to an improvement of those mechanisms, with a better integration of the implants. However, the phenomena behind those improvements are still not clear.
In this paper, we propose a three-dimensional (3D) model of a single cell migration using a cellular Potts (CP) model to study the influence of the surface topography on cell motility. To do so, various configurations were tested, such as: (i) a substrate with a random roughness, (ii) a substrate with a rectangular groove pattern (parallel and perpendicular to the direction of motion), (ii) a substrate with a sinusoidal groove pattern. To evaluate the influence of the surface topography on cell motility, for each configuration, the cell speed and shape as well as the contact surface between the cell and the substrate have been quantified.
Our numerical results demonstrate that, in agreement with the experimental observations of the literature, the substrate topography has an influence on the cell efficiency (i.e. cell speed), orientation and shape. Besides, we also show that the increase of the contact surface alone in presence of roughness is not enough to explain the improvement of cell migration on the various rough surfaces. Finally, we highlight the importance of the roughness dimension on cell motility. This could be a critical aspect to consider for further analyses and applications, such as surface treatments for medical applications.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92-08 Computational methods for problems pertaining to biology

References:

[1] Gaviria, L.; Salcido, J. P.; Guda, T.; Ong, J. L., Current trends in dental implants, J Korean Assoc. Oral Maxillofac. Surg., 40, 2, 50-60 (2014)
[2] Albrektsson, T.; Brånemark, P. I.; Eriksson, A.; Lindström, J., The preformed autologous bone graft. An experimental study in the rabbit, Scand J. Plast. Reconstr. Surg., 12, 3, 215-223 (1978)
[3] Albrektsson, T.; Brånemark, P. I.; Hansson, H. A.; Lindström, J., Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man, Acta Orthop. Scand, 52, 2, 155-170 (1981)
[4] Liddell, R.; Ajami, E.; Davies, J. E., Tau (τ): A new parameter to assess the osseointegration potential of an implant surface, Int. J. Oral Maxillofac. Implants, 32, 1, 102-112 (2017)
[5] Wennerberg, A., Albrektsson, T., et al., 2009. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implants Res., 20(4), 172-184. doi: 10.1111/j.1600-0501.2009.01775.x.
[6] Huang, H.-H., Ho, C.-T., Lee, T.-H., Lee, T.-L., Liao, K.-K., Chen, F.-L., et al., 2004. Effect of surface roughness of ground titanium on initial cell adhesion. Biomol. Eng., 21(3), 93-97. doi: 10.1016/j.bioeng.2004.05.001.
[7] Anselme, K., et al., 2000. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J. Biomed. Mater. Res., 49(2), 155-166. doi: 10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J.
[8] Anselme, K., Bigerelle,M., et al., 2014. On the relation between surface roughness of metallic substrates and adhesion of human primary bone cells. Scanning, 36(1), 11-20. doi: 10.1002/sca.21067.
[9] Andrukhov, O., Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness, Dent. Mater., 32, 11, 1374-1384 (2016)
[10] Wu, C.; Chen, M.; Zheng, T.; Yang, X., Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy, Biomed. Mater. Eng., 26, Suppl 1, S155-164 (2015)
[11] Lo, C. M.; Wang, H. B.; Dembo, M.; Wang, Y. L., Cell movement is guided by the rigidity of the substrate, Biophys. J., 79, 1, 144-152 (2000)
[12] Chang, C.-H.; Lee, H.-H.; Lee, C.-H., Substrate properties modulate cell membrane roughness by way of actin filaments, Sci. Rep., 7, 1, 9068 (2017)
[13] Discher, D. E., Janmey, P., Wang, Y.-L., et al., 2005. Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139-1143. doi: 10.1126/science.1116995.
[14] Raab, M., Swift, J., Dingal, P. C. D. P., Shah, P., Shin, J.-W., Discher, D. E., et al., 2012. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol., 199(4), 669-683. doi: 10.1083/jcb.201205056.
[15] Novaes, A. B.; de Souza, S. L.S.; de Barros, R. R.M.; Pereira, K. K.Y.; Iezzi, G.; Piattelli, A., Influence of implant surfaces on osseointegration, Braz. Dent. J., 21, 6, 471-481 (2010)
[16] Lamers, E., The influence of nanoscale topographical cues on initial osteoblast morphology and migration, Eur. Cell Mater., 20, 329-343 (2010)
[17] Kaiser,J.-P., Reinmann, A., Bruinink, A., et al., 2006. The effect of topographic characteristics on cell migration velocity. Biomaterials, 27(30), 5230-5241. doi: 10.1016/j.biomaterials.2006.06.002.
[18] Gallant, N. D., Michael, K. E., García, A. J., et al., 2005. Cell adhesion strengthening: Contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell., 16(9), 4329-4340. doi: 10.1091/mbc.E05-02-0170.
[19] Ponsonnet, L., et al., 2003. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater. Sci. Eng. C, 23(4), 551-5603. doi: 10.1016/S0928-4931(03)00033-X.
[20] Kim, M.-C., Neal, D. M., Kamm, R. D., Asada, H. H., et al., 2013. Dynamic modeling of cell migration and spreading behaviors on fibronectin coated planar substrates and micropatterned geometries. PLOS Comput. Biol., 9(2), e1002926. doi: 10.1371/journal.pcbi.1002926.
[21] Albert, P. J., Schwarz, U. S., et al., 2014. Dynamics of cell shape and forces on micropatterned substrates predicted by a Cellular Potts model. Biophys. J., 106(11), 2340-2352. doi: 10.1016/j.bpj.2014.04.036
[22] Graner, F., Glazier, J. A., et al., 1992. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett., 69(13), 2013-2016. doi: 10.1103/PhysRevLett.69.2013.
[23] Swat, M. H.; Thomas, G. L.; Belmonte, J. M.; Shirinifard, A.; Hmeljak, D.; Glazier, J. A., Multi-scale modeling of tissues using Compucell 3D, Methods Cell. Biol., 110, 325-366 (2012)
[24] Scianna, M.; Preziosi, L.; Wolf, K., A Cellular Potts model simulating cell migration on and in matrix environments, Math. Biosci. Eng., 10, 1, 235-261 (2013) · Zbl 1259.92024
[25] Chong, B., Gong, Z., Lin, Y., et al., 2016. Modeling the adhesive contact between cells and a wavy extracellular matrix mediated by receptor-ligand interactions. J. Appl. Mech., 84(1), 011010-011010‑7. doi: 10.1115/1.4034931.
[26] Decuzzi, P., Ferrari, M., et al. 2010. Modulating cellular adhesion through nanotopography. Biomaterials, 31(1), 173-179. doi: 10.1016/j.biomaterials.2009.09.018.
[27] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 6, 1087-1092 (1953,) · Zbl 1431.65006
[28] Deshpande, S. M., Subba Raju, P., et al., 1988. Monte carlo simulation for molecular gas dynamics. Sadhana, 2(1), 105-123. doi: 10.1007/BF02745661.
[29] Ilina, O., Bakker, G.-J., Vasaturo, A., Hofmann, R. M., Friedl, P., et al., 2011. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys. Biol., 8(1), 015010. doi: 10.1088/1478-3975/8/1/015010.
[30] Allena, R., Scianna, M., Preziosi, L., et al., 2016. A Cellular Potts model of single cell migration in presence of durotaxis. Math. Biosci., 275(Suppl. C), 57-70. doi: 10.1016/j.mbs.2016.02.011. · Zbl 1338.92027
[31] Rosales-Leal, J. I., Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion, Colloids Surf A Physicochem. Eng. Asp., 365, 1, 222-229 (2010,)
[32] Han, J., Menon, N. V., Kang, Y., Tee, S.-Y., et al., 2015. An in vitro study on the collective tumor cell migration on nanoroughened poly(dimethylsiloxane) surfaces. J. Mater. Chem. B, 3(8), 1565-1572. doi: 10.1039/C4TB01783H.
[33] Ranella, A. Barberoglou, M., Bakogianni, S., Fotakis, C., Stratakis, E., et al., 2010. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater., 6(7), 2711-2720. doi: 10.1016/j.actbio.2010.01.016.
[34] Dalton, B. A., Modulation of epithelial tissue and cell migration by microgrooves, J. Biomed. Mater. Res., 56, 2, 195-207 (2001)
[35] Uttayarat, P., Chen, M., Li, M., Allen, F. D., Composto, R. J., Lelkes, P. I., et al., 2008. Microtopography and flow modulate the direction of endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol., 294(2), H1027-1035. doi: 10.1152/ajpheart.00816.2007.
[36] Cheng, D., Jayne, R. K., Tamborini, A., Eyckmans, J., White, A. E., Chen, C. S., et al., 2019. Studies of 3D directed cell migration enabled by direct laser writing of curved wave topography. Biofabrication, 11(2), 021001. doi: 10.1088/1758-5090/ab047f.
[37] Hu, J.; Hardy, C.; Chen, C.-M.; Yang, S.; Voloshin, A. S.; Liu, Y., Enhanced cell adhesion and alignment on micro-wavy patterned surfaces, PLOS ONE, 9, 8, Article e104502 pp. (2014)
[38] Andersson, A.-S.; Olsson, P.; Lidberg, U.; Sutherland, D., The effects of continuous and discontinuous groove edges on cell shape and alignment, Exp. Cell Res., 288, 1, 177-188 (2003)
[39] Wu, T.-H., Li, C.-H., Tang, M.-J., Liang, J.-I., Chen, C.-H., Yeh, M.-L., et al., 2013. Migration speed and directionality switch of normal epithelial cells after TGF-β1-induced EMT (tEMT) on micro-structured polydimethylsiloxane (PDMS) substrates with variations in stiffness and topographic patterning. Cell Commun. Adhes., 20(5), 115-126. doi: 10.3109/15419061.2013.833194.
[40] Abagnale, G., Surface topography guides morphology and spatial patterning of induced pluripotent stem cell colonies, Stem Cell Rep., 9, 2, 654-666 (2017)
[41] Lee, K., et al., 2016. Contribution of actin filaments and microtubules to cell elongation and alignment depends on the grating depth of microgratings. J. Nanobiotechnol., 14(1), 35. doi: 10.1186/s12951-016-0187-8.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.