×

A stochastic characterization of the capture zone in pursuit-evasion games. (English) Zbl 1457.91084

Summary: Pursuit-evasion games are used to define guidance strategies for multi-agent planning problems. Although optimal strategies exist for deterministic scenarios, in the case when information about the opponent players is imperfect, it is important to evaluate the effect of uncertainties on the estimated variables. This paper proposes a method to characterize the game space of a pursuit-evasion game under a stochastic perspective. The Mahalanobis distance is used as a metric to determine the levels of confidence in the estimation of the Zero Effort Miss across the capture zone. This information can be used to gain an insight into the guidance strategy. A simulation is carried out to provide numerical results.

MSC:

91A24 Positional games (pursuit and evasion, etc.)
91A15 Stochastic games, stochastic differential games
91A80 Applications of game theory
93A16 Multi-agent systems
93B07 Observability
93E03 Stochastic systems in control theory (general)

References:

[1] Shinar, J.; Solution techniques for realistic pursuit-evasion games; Control and Dynamic Systems: New York, NY, USA 1981; Volume Volume 17 ,63-124. · Zbl 0547.90106
[2] Pontani, M.; Conway, B.A.; Numerical solution of the three-dimensional orbital pursuit-evasion game; J. Guid. Control Dyn.: 2009; Volume 32 ,474-487.
[3] Chung, T.H.; Hollinger, G.A.; Isler, V.; Search and pursuit-evasion in mobile robotics; Auton. Robot.: 2011; Volume 31 ,299.
[4] Isaacs, R.P.; ; Differential Games: Hoboken, NJ, USA 1965; . · Zbl 0125.38001
[5] Yavin, Y.; De Villiers, R.; Stochastic pursuit-evasion differential games in 3D; J. Optim. Theory Appl.: 1988; Volume 56 ,345-357. · Zbl 0619.90107
[6] Hayoun, S.Y.; Shima, T.; A Two-on-One Linear Pursuit-Evasion Game with Bounded Controls; J. Optim. Theory Appl.: 2017; Volume 174 ,837-857. · Zbl 1377.49043
[7] Stegagno, P.; Cognetti, M.; Oriolo, G.; Bülthoff, H.H.; Franchi, A.; Ground and aerial mutual localization using anonymous relative-bearing measurements; IEEE Trans. Robot.: 2016; Volume 32 ,1133-1151.
[8] He, S.; Shin, H.S.; Tsourdos, A.; Optimal active target localisation strategy with range-only measurements; Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics: ; .
[9] Oshman, Y.; Davidson, P.; Optimization of observer trajectories for bearings-only target localization; IEEE Trans. Aerosp. Electron. Syst.: 1999; Volume 35 ,892-902.
[10] Battistini, S.; Shima, T.; Differential games missile guidance with bearings-only measurements; IEEE Trans. Aerosp. Electron. Syst.: 2014; Volume 50 ,2906-2915.
[11] Seo, M.G.; Tahk, M.J.; Observability analysis and enhancement of radome aberration estimation with line-of-sight angle-only measurement; IEEE Trans. Aerosp. Electron. Syst.: 2015; Volume 51 ,3321-3331.
[12] Fonod, R.; Shima, T.; Estimation enhancement by cooperatively imposing relative intercept angles; J. Guid. Control Dyn.: 2017; Volume 40 ,1711-1725.
[13] He, S.; Shin, H.S.; Tsourdos, A.; Trajectory optimization for target localization with bearing-only measurement; IEEE Trans. Robot.: 2019; Volume 35 ,653-668.
[14] Fawcett, J.A.; Effect of course maneuvers on bearings-only range estimation; IEEE Trans. Acoust. Speech Signal Process.: 1988; Volume 36 ,1193-1199. · Zbl 0850.93758
[15] Roh, H.; Shim, S.W.; Tahk, M.J.; Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints; Int. J. Aeronaut. Space Sci.: 2018; Volume 19 ,423-432.
[16] Wang, X.; Cheng, Y.; Moran, B.; Bearings-only tracking analysis via information geometry; Proceedings of the 2010 13th International Conference on Information Fusion: ; ,1-6.
[17] Cheng, Y.; Wang, X.; Morelande, M.; Moran, B.; Information geometry of target tracking sensor networks; Inf. Fusion: 2013; Volume 14 ,311-326.
[18] Jauffret, C.; Observability and Fisher information matrix in nonlinear regression; IEEE Trans. Aerosp. Electron. Syst.: 2007; Volume 43 ,756-759.
[19] Gaudet, B.; Furfaro, R.; Linares, R.; Reinforcement learning for angle-only intercept guidance of maneuvering targets; Aerosp. Sci. Technol.: 2020; Volume 99 ,105746.
[20] Shima, T.; Shinar, J.; Time-varying linear pursuit-evasion game models with bounded controls; J. Guid. Control Dyn.: 2002; Volume 25 ,425-432.
[21] Zarchan, P.; Representation of realistic evasive maneuvers by the use of shaping filters; J. Guid. Control: 1979; Volume 2 ,290-295. · Zbl 0413.93071
[22] Kay, S.M.; ; Fundamentals of Statistical Signal Processing: Upper Saddle River, NJ, USA 1993; . · Zbl 0803.62002
[23] Taylor, J.; The Cramer-Rao estimation error lower bound computation for deterministic nonlinear systems; IEEE Trans. Autom. Control: 1979; Volume 24 ,343-344. · Zbl 0399.93046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.