×

Semiclassical limit of topological Rényi entropy in \(3d\) Chern-Simons theory. (English) Zbl 1457.81110

Summary: We study the multi-boundary entanglement structure of the state associated with the torus link complement \(S^3 \backslash T_{ p,q }\) in the set-up of three-dimensional \(\mathrm{SU}(2)_k\) Chern-Simons theory. The focal point of this work is the asymptotic behavior of the Rényi entropies, including the entanglement entropy, in the semiclassical limit of \(k \rightarrow \infty\). We present a detailed analysis of several torus links and observe that the entropies converge to a finite value in the semiclassical limit. We further propose that the large \(k\) limiting value of the Rényi entropy of torus links of type \(T_{ p,pn }\) is the sum of two parts: (i) the universal part which is independent of \(n\), and (ii) the non-universal or the linking part which explicitly depends on the linking number \(n\). Using the analytic techniques, we show that the universal part comprises of Riemann zeta functions and can be written in terms of the partition functions of two-dimensional topological Yang-Mills theory. More precisely, it is equal to the Rényi entropy of certain states prepared in topological \(2d\) Yang-Mills theory with SU(2) gauge group. Further, the universal parts appearing in the large \(k\) limits of the entanglement entropy and the minimum Rényi entropy for torus links \(T_{ p,pn }\) can be interpreted in terms of the volume of the moduli space of flat connections on certain Riemann surfaces. We also analyze the Rényi entropies of \(T_{ p,pn }\) link in the double scaling limit of \(k \rightarrow \infty\) and \(n \rightarrow \infty\) and propose that the entropies converge in the double limit as well.

MSC:

81T45 Topological field theories in quantum mechanics
81P17 Quantum entropies
58J28 Eta-invariants, Chern-Simons invariants
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems

Software:

OEIS

References:

[1] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[2] Kitaev, A.; Preskill, J., Topological entanglement entropy, Phys. Rev. Lett., 96, 110404 (2006) · doi:10.1103/PhysRevLett.96.110404
[3] Levin, M.; Wen, X-G, Detecting topological order in a ground state wave function, Phys. Rev. Lett., 96, 110405 (2006) · doi:10.1103/PhysRevLett.96.110405
[4] Dong, S.; Fradkin, E.; Leigh, RG; Nowling, S., Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids, JHEP, 05, 016 (2008) · doi:10.1088/1126-6708/2008/05/016
[5] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 351 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[6] Balasubramanian, V.; Fliss, JR; Leigh, RG; Parrikar, O., Multi-boundary entanglement in Chern-Simons theory and link invariants, JHEP, 04, 061 (2017) · Zbl 1378.81061 · doi:10.1007/JHEP04(2017)061
[7] Dwivedi, S.; Singh, VK; Dhara, S.; Ramadevi, P.; Zhou, Y.; Joshi, LK, Entanglement on linked boundaries in Chern-Simons theory with generic gauge groups, JHEP, 02, 163 (2018) · Zbl 1387.58029 · doi:10.1007/JHEP02(2018)163
[8] Balasubramanian, V.; DeCross, M.; Fliss, J.; Kar, A.; Leigh, RG; Parrikar, O., Entanglement entropy and the colored Jones polynomial, JHEP, 05, 038 (2018) · Zbl 1391.81177 · doi:10.1007/JHEP05(2018)038
[9] Hung, L-Y; Wu, Y-S; Zhou, Y., Linking entanglement and discrete anomaly, JHEP, 05, 008 (2018) · Zbl 1391.83110 · doi:10.1007/JHEP05(2018)008
[10] Melnikov, D.; Mironov, A.; Mironov, S.; Morozov, A.; Morozov, A., From Topological to Quantum Entanglement, JHEP, 05, 116 (2020) · Zbl 1416.81170
[11] Camilo, G.; Melnikov, D.; Novaes, F.; Prudenziati, A., Circuit complexity of knot states in Chern-Simons theory, JHEP, 07, 163 (2019) · Zbl 1418.81053 · doi:10.1007/JHEP07(2019)163
[12] Dwivedi, S.; Singh, VK; Ramadevi, P.; Zhou, Y.; Dhara, S., Entanglement on multiple S^2boundaries in Chern-Simons theory, JHEP, 08, 034 (2019) · Zbl 1421.81128 · doi:10.1007/JHEP08(2019)034
[13] Buican, M.; Radhakrishnan, R., Galois conjugation and multiboundary entanglement entropy, JHEP, 12, 045 (2020) · Zbl 1457.81109 · doi:10.1007/JHEP12(2020)045
[14] Dwivedi, S.; Addazi, A.; Zhou, Y.; Sharma, P., Multi-boundary entanglement in Chern-Simons theory with finite gauge groups, JHEP, 04, 158 (2020) · Zbl 1436.81025 · doi:10.1007/JHEP04(2020)158
[15] Stevan, S., Chern-Simons invariants of torus links, Annales Henri Poincaré, 11, 1201 (2010) · Zbl 1208.81149 · doi:10.1007/s00023-010-0058-z
[16] Brini, A.; Eynard, B.; Mariño, M., Torus knots and mirror symmetry, Annales Henri Poincaré, 13, 1873 (2012) · Zbl 1256.81086 · doi:10.1007/s00023-012-0171-2
[17] S. Stevan, Knot invariants, Chern-Simons theory and the topological recursion, Ph.D. thesis, Geneva University, Geneva, Italy (2014).
[18] M. Renner, A276592: The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A276592 (2016).
[19] Witten, E., On quantum gauge theories in two-dimensions, Commun. Math. Phys., 141, 153 (1991) · Zbl 0762.53063 · doi:10.1007/BF02100009
[20] Verlinde, EP, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B, 300, 360 (1988) · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.