×

Topological aspects of 4D abelian lattice gauge theories with the \(\theta\) parameter. (English) Zbl 1457.81081

Summary: We study a four-dimensional U(1) gauge theory with the \(\theta\) angle, which was originally proposed by Cardy and Rabinovici. It is known that the model has the rich phase diagram thanks to the presence of both electrically and magnetically charged particles. We discuss the topological nature of the oblique confinement phase of the model at \(\theta = \pi\), and show how its appearance can be consistent with the anomaly constraint. We also construct the \(\mathrm{SL} (2, \mathbb{Z} )\) self-dual theory out of the Cardy-Rabinovici model by gauging a part of its one-form symmetry. This self-duality has a mixed ’t Hooft anomaly with gravity, and its implications on the phase diagram is uncovered. As the model shares the same global symmetry and ’t Hooft anomaly with those of SU \((N)\) Yang-Mills theory, studying its topological aspects would provide us more hints to explore possible dynamics of non-abelian gauge theories with nonzero \(\theta\) angles.

MSC:

81T25 Quantum field theory on lattices
81T45 Topological field theories in quantum mechanics
81T50 Anomalies in quantum field theory
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems

References:

[1] Nambu, Y., Strings, monopoles and gauge fields, Phys. Rev. D, 10, 4262 (1974) · doi:10.1103/PhysRevD.10.4262
[2] Mandelstam, S., Vortices and quark confinement in nonabelian gauge theories, Phys. Rep., 23, 245 (1976) · doi:10.1016/0370-1573(76)90043-0
[3] G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B138 (1978) 1 [INSPIRE].
[4] Polyakov, AM, Compact gauge fields and the infrared catastrophe, Phys. Lett. B, 59, 82 (1975) · doi:10.1016/0370-2693(75)90162-8
[5] G. ’t Hooft, Topology of the gauge condition and new confinement phases in nonabelian gauge theories, Nucl. Phys. B190 (1981) 455 [INSPIRE].
[6] Witten, E., Dyons of charge e θ/2π, Phys. Lett. B, 86, 283 (1979) · doi:10.1016/0370-2693(79)90838-4
[7] Cardy, JL; Rabinovici, E., Phase structure of Z(p) models in the presence of a theta parameter, Nucl. Phys. B, 205, 1 (1982) · doi:10.1016/0550-3213(82)90463-1
[8] Cardy, JL, Duality and the theta parameter in abelian lattice models, Nucl. Phys. B, 205, 17 (1982) · doi:10.1016/0550-3213(82)90464-3
[9] Sulejmanpasic, T.; Gattringer, C., Abelian gauge theories on the lattice: θ-terms and compact gauge theory with(out) monopoles, Nucl. Phys. B, 943, 114616 (2019) · Zbl 1415.81050 · doi:10.1016/j.nuclphysb.2019.114616
[10] Gattringer, C.; Göschl, D.; Sulejmanpasic, T., Dual simulation of the 2d U(1) gauge Higgs model at topological angle θ = π: critical endpoint behavior, Nucl. Phys. B, 935, 344 (2018) · Zbl 1398.81299 · doi:10.1016/j.nuclphysb.2018.08.017
[11] Gaiotto, D.; Kapustin, A.; Komargodski, Z.; Seiberg, N., Theta, time reversal, and temperature, JHEP, 05, 091 (2017) · Zbl 1380.83255 · doi:10.1007/JHEP05(2017)091
[12] Gaiotto, D.; Kapustin, A.; Seiberg, N.; Willett, B., Generalized global symmetries, JHEP, 02, 172 (2015) · Zbl 1388.83656 · doi:10.1007/JHEP02(2015)172
[13] Tanizaki, Y.; Kikuchi, Y., Vacuum structure of bifundamental gauge theories at finite topological angles, JHEP, 06, 102 (2017) · Zbl 1380.81375 · doi:10.1007/JHEP06(2017)102
[14] Y. Kikuchi and Y. Tanizaki, Global inconsistency, ’t Hooft anomaly, and level crossing in quantum mechanics, PTEP2017 (2017) 113B05 [arXiv:1708.01962] [INSPIRE]. · Zbl 1524.81083
[15] Tanizaki, Y.; Sulejmanpasic, T., Anomaly and global inconsistency matching: θ-angles, SU(3)/U(1)^2nonlinear σ-model, SU(3) chains and its generalizations, Phys. Rev. B, 98, 115126 (2018) · doi:10.1103/PhysRevB.98.115126
[16] Komargodski, Z.; Sharon, A.; Thorngren, R.; Zhou, X., Comments on Abelian higgs models and persistent order, SciPost Phys., 6, 003 (2019) · doi:10.21468/SciPostPhys.6.1.003
[17] Karasik, A.; Komargodski, Z., The bi-fundamental gauge theory in 3 + 1 dimensions: the vacuum structure and a cascade, JHEP, 05, 144 (2019) · doi:10.1007/JHEP05(2019)144
[18] Córdova, C.; Freed, DS; Lam, HT; Seiberg, N., Anomalies in the space of coupling constants and their dynamical applications I, SciPost Phys., 8, 001 (2020) · doi:10.21468/SciPostPhys.8.1.001
[19] Córdova, C.; Freed, DS; Lam, HT; Seiberg, N., Anomalies in the space of coupling constants and their dynamical applications II, SciPost Phys., 8, 002 (2020) · doi:10.21468/SciPostPhys.8.1.002
[20] Dashen, RF, Some features of chiral symmetry breaking, Phys. Rev. D, 3, 1879 (1971) · doi:10.1103/PhysRevD.3.1879
[21] Witten, E., Large N chiral dynamics, Annals Phys., 128, 363 (1980) · doi:10.1016/0003-4916(80)90325-5
[22] Di Vecchia, P.; Veneziano, G., Chiral dynamics in the large N limit, Nucl. Phys. B, 171, 253 (1980) · doi:10.1016/0550-3213(80)90370-3
[23] N. Ohta, Vacuum structure and chiral charge quantization in the large N limit, Prog. Theor. Phys.66 (1981) 1408 [Erratum ibid.67 (1982) 993] [INSPIRE]. · Zbl 1074.81589
[24] Creutz, M., Quark masses and chiral symmetry, Phys. Rev. D, 52, 2951 (1995) · doi:10.1103/PhysRevD.52.2951
[25] A.V. Smilga, QCD at theta similar to pi, Phys. Rev. D59 (1999) 114021 [hep-ph/9805214] [INSPIRE].
[26] Witten, E., Theta dependence in the large N limit of four-dimensional gauge theories, Phys. Rev. Lett., 81, 2862 (1998) · Zbl 0947.81130 · doi:10.1103/PhysRevLett.81.2862
[27] Di Vecchia, P.; Rossi, G.; Veneziano, G.; Yankielowicz, S., Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach, JHEP, 12, 104 (2017) · Zbl 1383.81339 · doi:10.1007/JHEP12(2017)104
[28] Aharony, O.; Seiberg, N.; Tachikawa, Y., Reading between the lines of four-dimensional gauge theories, JHEP, 08, 115 (2013) · Zbl 1342.81248 · doi:10.1007/JHEP08(2013)115
[29] Witten, E., On S duality in Abelian gauge theory, Selecta Math., 1, 383 (1995) · Zbl 0833.53024 · doi:10.1007/BF01671570
[30] Verlinde, EP, Global aspects of electric-magnetic duality, Nucl. Phys. B, 455, 211 (1995) · Zbl 0925.58107 · doi:10.1016/0550-3213(95)00431-Q
[31] N. Seiberg, Y. Tachikawa and K. Yonekura, Anomalies of duality groups and extended conformal manifolds, PTEP(2018)073B04 [arXiv:1803.07366] [INSPIRE]. · Zbl 1477.81093
[32] J. Villain, Theory of one- and two-dimensional magnets with an easy magnetization plane. ii. the planar, classical, two-dimensional magnet, J. Phys. France36 (1975) 581.
[33] Dirac, PAM, Quantized singularities in the electromagnetic field, Proc. Roy. Soc. London A, 133, 60 (1931) · JFM 57.1581.06 · doi:10.1098/rspa.1931.0130
[34] Schwinger, JS, Magnetic charge and quantum field theory, Phys. Rev., 144, 1087 (1966) · doi:10.1103/PhysRev.144.1087
[35] Zwanziger, D., Quantum field theory of particles with both electric and magnetic charges, Phys. Rev., 176, 1489 (1968) · doi:10.1103/PhysRev.176.1489
[36] Banks, T.; Myerson, R.; Kogut, JB, Phase transitions in Abelian lattice gauge theories, Nucl. Phys. B, 129, 493 (1977) · doi:10.1016/0550-3213(77)90129-8
[37] Savit, R., Topological excitations in U(1) invariant theories, Phys. Rev. Lett., 39, 55 (1977) · doi:10.1103/PhysRevLett.39.55
[38] Creutz, M.; Jacobs, L.; Rebbi, C., Experiments with a gauge invariant Ising system, Phys. Rev. Lett., 42, 1390 (1979) · doi:10.1103/PhysRevLett.42.1390
[39] M. Creutz, L. Jacobs and C. Rebbi, Monte Carlo study of Abelian lattice gauge theories, [INSPIRE].
[40] Elitzur, S.; Pearson, RB; Shigemitsu, J., The phase structure of discrete abelian spin and gauge systems, Phys. Rev. D, 19, 3698 (1979) · doi:10.1103/PhysRevD.19.3698
[41] Horn, D.; WEinstein, M.; Yankielowicz, S., Hamiltonian approach to Z(N) lattice gauge theories, Phys. Rev. D, 19, 3715 (1979) · doi:10.1103/PhysRevD.19.3715
[42] Fradkin, EH; Shenker, SH, Phase diagrams of lattice gauge theories with Higgs fields, Phys. Rev. D, 19, 3682 (1979) · doi:10.1103/PhysRevD.19.3682
[43] Banks, T.; Rabinovici, E., Finite temperature behavior of the lattice Abelian Higgs model, Nucl. Phys. B, 160, 349 (1979) · doi:10.1016/0550-3213(79)90064-6
[44] A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D74 (2006) 025005 [hep-th/0501015] [INSPIRE].
[45] M.J. Strassler, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys. B385 (1992) 145 [hep-ph/9205205] [INSPIRE] .
[46] Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies, and deconfinement in quantum antiferromagnets, Phys. Rev. B97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].
[47] Shimizu, H.; Yonekura, K., Anomaly constraints on deconfinement and chiral phase transition, Phys. Rev. D, 97, 105011 (2018) · doi:10.1103/PhysRevD.97.105011
[48] D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD4 , walls, and dualities in 2 + 1 dimensions, JHEP01 (2018) 110 [arXiv:1708.06806] [INSPIRE]. · Zbl 1384.83056
[49] Tanizaki, Y.; Misumi, T.; Sakai, N., Circle compactification and ’t Hooft anomaly, JHEP, 12, 056 (2017) · Zbl 1383.83192 · doi:10.1007/JHEP12(2017)056
[50] Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram of massless ℤ_N-QCD, Phys. Rev. D97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].
[51] Yamazaki, M., Relating ’t Hooft anomalies of 4d pure Yang-Mills and 2d ℂℙ^N − 1model, JHEP, 10, 172 (2018) · Zbl 1402.83102 · doi:10.1007/JHEP10(2018)172
[52] Guo, M.; Putrov, P.; Wang, J., Time reversal, SU(N) Yang-Mills and cobordisms: Interacting topological superconductors/insulators and quantum spin liquids in 3+1D, Annals Phys., 394, 244 (2018) · Zbl 1390.81323 · doi:10.1016/j.aop.2018.04.025
[53] K. Aitken, A. Cherman and M. Ünsal, Dihedral symmetry in SU(N) Yang-Mills theory, Phys. Rev. D100 (2019) 085004 [arXiv:1804.05845] [INSPIRE].
[54] Tanizaki, Y., Anomaly constraint on massless QCD and the role of Skyrmions in chiral symmetry breaking, JHEP, 08, 171 (2018) · Zbl 1396.81215 · doi:10.1007/JHEP08(2018)171
[55] Yonekura, K., Anomaly matching in QCD thermal phase transition, JHEP, 05, 062 (2019) · Zbl 1416.81208 · doi:10.1007/JHEP05(2019)062
[56] E. Poppitz and T.A. Ryttov, Possible new phase for adjoint QCD, Phys. Rev. D100 (2019) 091901 [arXiv:1904.11640] [INSPIRE].
[57] C. Córdova and T.T. Dumitrescu, Candidate phases for SU(2) adjoint QCD_4with two flavors from \(\mathcal{N} = 2\) supersymmetric Yang-Mills theory, arXiv:1806.09592 [INSPIRE].
[58] T. Misumi, Y. Tanizaki and M. Ünsal, Fractional θ angle, ’t Hooft anomaly, and quantum instantons in charge-q multi-flavor Schwinger model, JHEP07 (2019) 018 [arXiv:1905.05781] [INSPIRE]. · Zbl 1418.83063
[59] Anber, MM; Poppitz, E., On the Baryon-Color-Flavor (BCF) anomaly in vector-like theories, JHEP, 11, 063 (2019) · Zbl 1429.83083 · doi:10.1007/JHEP11(2019)063
[60] Anber, MM; Poppitz, E., Generalized ’t Hooft anomalies on non-spin manifolds, JHEP, 04, 097 (2020) · Zbl 1436.81128 · doi:10.1007/JHEP04(2020)097
[61] Sulejmanpasic, T.; Tanizaki, Y.; Ünsal, M., Universality between vector-like and chiral quiver gauge theories: Anomalies and domain walls, JHEP, 06, 173 (2020) · doi:10.1007/JHEP06(2020)173
[62] T. Furusawa, Y. Tanizaki and E. Itou, Finite-density massless two-color QCD at the isospin Roberge-Weiss point and the ’t Hooft anomaly, Phys. Rev. Res.2 (2020) 033253 [arXiv:2005.13822] [INSPIRE].
[63] B.S. Acharya and C. Vafa, On domain walls of N = 1 supersymmetric Yang-Mills in four-dimensions, hep-th/0103011 [INSPIRE].
[64] M.M. Anber, E. Poppitz and T. Sulejmanpasic, Strings from domain walls in supersymmetric Yang-Mills theory and adjoint QCD, Phys. Rev. D92 (2015) 021701 [arXiv:1501.06773] [INSPIRE].
[65] T. Sulejmanpasic, H. Shao, A. Sandvik and M. Ünsal, Confinement in the bulk, deconfinement on the wall: infrared equivalence between compactified QCD and quantum magnets, Phys. Rev. Lett.119 (2017) 091601 [arXiv:1608.09011] [INSPIRE].
[66] Cox, AA; Poppitz, E.; Wong, SSY, Domain walls and deconfinement: a semiclassical picture of discrete anomaly inflow, JHEP, 12, 011 (2019) · doi:10.1007/JHEP12(2019)011
[67] Ye, P.; Hughes, TL; Maciejko, J.; Fradkin, E., Composite particle theory of three-dimensional gapped fermionic phases: Fractional topological insulators and charge-loop excitation symmetry, Phys. Rev. B, 94, 115104 (2016) · doi:10.1103/PhysRevB.94.115104
[68] Kapustin, A.; Seiberg, N., Coupling a QFT to a TQFT and duality, JHEP, 04, 001 (2014) · doi:10.1007/JHEP04(2014)001
[69] Tachikawa, Y., On gauging finite subgroups, SciPost Phys., 8, 015 (2020) · doi:10.21468/SciPostPhys.8.1.015
[70] C. Córdova and K. Ohmori, Anomaly constraints on gapped phases with discrete chiral symmetry, Phys. Rev. D102 (2020) 025011 [arXiv:1912.13069] [INSPIRE].
[71] C. Córdova and K. Ohmori, Anomaly obstructions to symmetry preserving gapped phases, arXiv:1910.04962 [INSPIRE].
[72] Davies, NM; Hollowood, TJ; Khoze, VV, Monopoles, affine algebras and the gluino condensate, J. Math. Phys., 44, 3640 (2003) · Zbl 1062.81543 · doi:10.1063/1.1586477
[73] M. Shifman and M. Ünsal, QCD-like theories on R^3×S^1: a smooth journey from small to large r(S^1) with double-trace deformations, Phys. Rev. D78 (2008) 065004 [arXiv:0802.1232] [INSPIRE].
[74] Poppitz, E.; Schäfer, T.; Ünsal, M., Continuity, deconfinement, and (super) Yang-Mills theory, JHEP, 10, 115 (2012) · Zbl 1397.81167 · doi:10.1007/JHEP10(2012)115
[75] Poppitz, E.; Schäfer, T.; Ünsal, M., Universal mechanism of (semi-classical) deconfinement and theta-dependence for all simple groups, JHEP, 03, 087 (2013) · Zbl 1342.81375 · doi:10.1007/JHEP03(2013)087
[76] Anber, MM; Collier, S.; Poppitz, E.; Strimas-Mackey, S.; Teeple, B., Deconfinement in \(\mathcal{N} = 1\) super Yang-Mills theory on \({\mathbb{R}}^3\times{\mathbbm{S}}^1\) via dual-Coulomb gas and “affine” XY-model, JHEP, 11, 142 (2013) · doi:10.1007/JHEP11(2013)142
[77] S. Chen, K. Fukushima, H. Nishimura and Y. Tanizaki, Deconfinement and \(\mathcal{CP}\) breaking at θ = π in Yang-Mills theories and a novel phase for SU(2), Phys. Rev. D102 (2020) 034020 [arXiv:2006.01487] [INSPIRE].
[78] C.-T. Hsieh, Y. Tachikawa and K. Yonekura, Anomaly inflow and p-form gauge theories, arXiv:2003.11550 [INSPIRE].
[79] Hsieh, C-T; Tachikawa, Y.; Yonekura, K., Anomaly of the electromagnetic duality of Maxwell theory, Phys. Rev. Lett., 123, 161601 (2019) · doi:10.1103/PhysRevLett.123.161601
[80] Anber, MM; Poppitz, E., On the global structure of deformed Yang-Mills theory and QCD(adj) on R^3×S^1, JHEP, 10, 051 (2015) · Zbl 1388.81756 · doi:10.1007/JHEP10(2015)051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.