×

Quantum simulation dynamics and circuit synthesis of FMO complex on an NMR quantum computer. (English) Zbl 1457.81027

Summary: Recently, the dynamics simulation of light-harvesting complexes as an open quantum system, in the weak and strong coupling regimes, has received much attention. In this paper, we investigate a digital quantum simulation approach of the Fenna-Matthews-Olson (FMO) photosynthetic pigment-protein complex surrounded with a Markovian bath, i.e. memoryless, based on a nuclear magnetic resonance (NMR) quantum computer. For this purpose, we apply the decoupling (recoupling) method, which is turn off (on) the couplings, and also Solovay-Kitaev techniques to decompose Hamiltonian and Lindbladians into efficient elementary gates on an NMR simulator. Finally, we design the quantum circuits for the unitary and nonunitary part due to the system-environment interactions of the open system dynamics.

MSC:

81P68 Quantum computation
81S22 Open systems, reduced dynamics, master equations, decoherence
81-10 Mathematical modeling or simulation for problems pertaining to quantum theory
81P65 Quantum gates

References:

[1] Breuer, H.-P. and Petruccione, F.et al., The Theory of Open Quantum Systems (Oxford University Press on Demand, 2002). · Zbl 1053.81001
[2] Feynman, R. P., Int. J. Theor. Phys.21(6-7) (1982) 467.
[3] Ballester, J. J. G.-R. F. D. D., Romero, G. and Solano, E., Phys. Rev. X2(5298) (2012) 021007.
[4] Lloyd, S., Science273 (1996) 1073. · Zbl 1226.81059
[5] Hillery, M., Ziman, M. and Bužek, V., Phys. Rev. A66(4) (2002) 042302.
[6] Bacon, D., Childs, A. M., Chuang, I. L., Kempe, J., Leung, D. W. and Zhou, X., Phys. Rev. A64(6) (2001) 062302.
[7] Ziman, M., Štelmachovič, P. and Bužek, V., J. Open Syst. Inform. Dynam12(1) (2005) 81. · Zbl 1074.82019
[8] M. Koniorczyk, V. Buzek, P. Adam and A. Laszlo, arXiv:quant-ph/0205008.
[9] Koniorczyk, M., Bužek, V. and Adam, P., J. Eur. Phys. D37(2) (2006) 275.
[10] Wang, D.-S., Berry, D. W., de Oliveira, M. C. and Sanders, B. C., Phys. Rev. Lett.111(13) (2013) 130504.
[11] Porras, D. and Cirac, J. I., Phys. Rev. Lett.92(20) (2004) 207901.
[12] Kim, K., Chang, M.-S., Korenblit, S., Islam, R., Edwards, E. E., Freericks, J. K., Lin, G.-D., Duan, L.-M. and Monroe, C., Nature465(7298) (2010) 590.
[13] Jaksch, D. and Zoller, P., Ann. Phys.315(1) (2005) 52. · Zbl 1065.81527
[14] You, J. and Nori, F., Nature474(7353) (2011) 589.
[15] Clarke, J. and Wilhelm, F. K., Nature453(7198) (2008) 1031.
[16] Cho, J., Angelakis, D. G. and Bose, S., Phys. Rev. Lett.101(24) (2008) 246809.
[17] Manousakis, E., J. Low Temp. Phys.126(5-6) (2002) 1501.
[18] Fahmy, A. F. and Havel, T. F., Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing, Quantum Computation and Quantum Information Theory: Reprint Volume with Introductory Notes for ISI TMR Network School, Villa Gualino, Torino, Italy, , 12-23 July 1999 (World Scientific, 2000), p. 471.
[19] Gershenfeld, N. A. and Chuang, I. L., Science275(5298) (1997) 350. · Zbl 1226.81047
[20] Cory, D. G., Fahmy, A. F. and Havel, T. F., Proc. Natl. Acad. Sci.94(5) (1997) 1634.
[21] Li, Z., Yung, M.-H., Chen, H., Lu, D., Whitfield, J. D., Peng, X., Aspuru-Guzik, A. and Du, J., Sci. Rep.1 (2011) 88.
[22] Zhang, J., Yung, M.-H., Laflamme, R., Aspuru-Guzik, A. and Baugh, J., Nature Commun.3 (2012) ( 880).
[23] Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y. and Nori, F., Nature Phys.9(1) (2013) 10.
[24] Chin, A., Huelga, S. and Plenio, M., Philos. Trans. R. Soc. A370(1972) (2012) 3638.
[25] Sinanoğlu, O., Modern Quantum Chemistry: Action of Light and Organic Crystals (Academic Press, 1965).
[26] Grover, M. and Silbey, R., J. Chem. Phys.54(11) (1971) 4843.
[27] Yang, M. and Fleming, G. R., J. Chem. Phys.282(1) (2002) 163.
[28] Novoderezhkin, V. I., Palacios, M. A., Van Amerongen, H. and Van Grondelle, R., J. Phys. Chem. B108(29) (2004) 10363.
[29] Jang, S., Newton, M. D. and Silbey, R. J., Phys. Rev. Lett.92(21) (2004) 218301.
[30] Poddubnyy, V. V., Glebov, I. O. and Eremin, V. V., Theor. Math. Phys.178(2) (2014) 257.
[31] Caruso, F., Chin, A. W., Datta, A., Huelga, S. F. and Plenio, M. B., Phys. Rev. A81(6) (2010) 062346.
[32] Wang, X., Ritschel, G., Wüster, S. and Eisfeld, A., J. Phys. Chem. Chem. Phys.17(38) (2015) 25629.
[33] Caruso, F., Chin, A. W., Datta, A., Huelga, S. F. and Plenio, M. B., J. Chem. Phys.131(10) (2009) 09B612.
[34] Chin, A. W., Datta, A., Caruso, F., Huelga, S. F. and Plenio, M. B., New J. Phys.12(6) (2010) 065002.
[35] Moix, J., Wu, J., Huo, P., Coker, D. and Cao, J., J. Phys. Chem. Lett.2(24) (2011) 3045.
[36] Mahdian, M., Arjmandi, M. and Marahem, F., Chain mapping approach of hamiltonian for fmo complex using associated, generalized and exceptional jacobi polynomials, International Journal of Modern Physics B30(18) (2016) 1650107. · Zbl 1344.82033
[37] Yeh, S.-H. and Kais, S., J. Phys. Chem.141(23) (2014) 12B645_1.
[38] Mostame, S., Huh, J., Kreisbeck, C., Kerman, A. J., Fujita, T., Eisfeld, A. and Aspuru-Guzik, A., J. Quantum Inf. Process.16(2) (2017) 44. · Zbl 1387.81168
[39] Chin, A., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S. and Plenio, M., Nature Phys.9(2) (2013) 113.
[40] M. Mahdian and H. D. Yeganeh, Quantum simulation of FMO complex using one-parameter semigroup of generators, Brazilian Journal of Physics, DOI: 10.1007/s13538-020-00804-4.
[41] Leung, D. W., Chuang, I. L., Yamaguchi, F. and Yamamoto, Y., Phys. Rev. A61(4) (2000) 042310.
[42] J. A. Jones, arXiv:1011.1382.
[43] R. S. Smith, M. J. Curtis and W. J. Zeng, arXiv:1608.03355.
[44] Trotter, H. F., Proc. Am. Math. Soc.10(4) (1959) 545. · Zbl 0099.10401
[45] M. B. Ruskai, S. Szarek and E. Werner, arXiv:quant-ph/0101003.
[46] Daffer, S., Wódkiewicz, K. and McIver, J. K., Phys. Rev. A67(6) (2003) 062312. · Zbl 1225.81166
[47] Briegel, H.-J. and Englert, B.-G., Phys. Rev. A47(4) (1993) 3311.
[48] Slichter, C. P., Principles of Magnetic Resonance, Vol. 1 (Springer Science & Business Media, 2013).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.