×

A consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problems. (English) Zbl 1457.65103

Summary: This paper presents a new consistent and stabilized finite-element formulation for fourth-order incompressible flow problems. The formulation is based on the \(C^{0}\)-interior penalty method, the Galerkin least-square (GLS) scheme, which assures that the formulation is weakly coercive for spaces that fail to satisfy the inf-sup condition, and considers discontinuous pressure interpolations. A stability analysis through a lemma establishes that the proposed formulation satisfies the inf-sup condition, thus confirming the robustness of the method. This lemma indicates that, at the element level, there exists an optimal or quasi-optimal GLS stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, the geometry of the finite element, and the fluid viscosity term. Numerical experiments are carried out to illustrate the ability of the formulation to deal with arbitrary interpolations for velocity and pressure, and to stabilize large pressure gradients.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics

References:

[1] Engel, G.; Garikipati, K.; Hughes, T. J.R.; Larson, M. G.; Mazzei, L.; Taylor, R. L., Continuous/discontinouos finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Meth. Appl. Mech. Eng., 191, 3669-3750 (2002) · Zbl 1086.74038
[2] Brenner, S. C., An a posteriori error estimator for a quadratic \(C^0\)-interior penalty method for biharmonic problem, J. Numer. Anal., 30, 777-798 (2010) · Zbl 1201.65197
[3] Brenner, S. C.; Sung, L.-Y., C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., 22-23, 1-3, 83-118 (2005) · Zbl 1071.65151
[4] Papanicolopulos, S.-A.; Zervos, A.; Vardoulakis, I., Discretization of Gradient Elasticity Problems Using C1 Finite Elements, (Maugin, G. A.; Metrikine, A. V., Mechanics of Generalized Continua: One Hundred Years After the Cosserats (2010), Springer), 269277
[5] Douglas, J. Jr.; Dupont, T.; Percell, P.; Scott, R., A family of \(C^1\) finite elements with optimal approximations properties for various Galerkin for 2nd and 4th order problems, R.A.I.R.O. Model. Math. Anal. Numer., 13, 227-255 (1979) · Zbl 0419.65068
[6] Wells, G. N.; Garikipati, K.; Molari, L., A discontinuous Galerkin formulation for a strain gradient-dependent continuum model, Comput. Methods Appl. Mech. Eng., 193, 33-35, 3633-3645 (2004) · Zbl 1068.74084
[7] Wells, G. N.; Kuhl, E.; Garikipati, K., A discontinuous Galerkin method for the Cahn-Hilliard equation, J. Comput. Phys., 218, 860-877 (2006) · Zbl 1106.65086
[8] Wells, G. N.; Dung, N. T., A \(C^0\) discontinuous Galerkin formulation for Kirchhoff plates, Comput. Methods Appl. Mech. Eng., 196, 3370-3380 (2007) · Zbl 1173.74447
[9] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods. Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer-Verlag · Zbl 0788.73002
[10] L Guermond, J.; Ern, A., A Theory and Pratictice of Finite Elements (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1059.65103
[11] Karam, J.; Loula, A. F.D., A non-standard application of Babuska-Brezzi theory to finite element analysis of Stokes problem, Math. Appl. Comp., 10, 243-262 (1991) · Zbl 0753.76098
[12] Gresho, P. M.; Sani, R. L., Incompressible flow and the finite element method, Isothermal Laminar Flow, vol. 2 (1998), Wiley: Wiley England · Zbl 0941.76002
[13] Brezzi, F.; Falk, R. S., stablility of higher-order Hood-Taylor methods, SIAM J. Numer. Anal., 28, 581-590 (1991) · Zbl 0731.76042
[14] Barth, T.; Bochev, P.; Shadid, J.; Gunzburger, M., A taxonomy of consistenly stabilized finite element methods for the Stokes problem, SIAM J. Sci. Comp., 25, 1585-1607 (2004) · Zbl 1133.76307
[15] Franca, L. P.; Frey, S. L., Stabilized finite element methods: II. The incompressible NavierStokes equations, Comput. Methods Appl. Mech. Eng., 99, 209-233 (1992) · Zbl 0765.76048
[16] Hughes, T. J.R.; Franca, L. P., A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various wellposed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Eng., 65, 85-96 (1987) · Zbl 0635.76067
[17] Hughes, T. J.R.; Franca, L. P.; Balestra, M. A., A new finite element formulation for computational fluid dynamics: VIII. The Glerkin/least square methods for advective-diffusive equations, Comput. Methods Appl. Mech. Eng., 73, 173-189 (1989) · Zbl 0697.76100
[18] Franca, L. P.; Hughes, T. J.R., Convergence analyses of Galerkin least-squares methods for advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 105, 285-298 (1993) · Zbl 0771.76037
[19] Franca, L. P.; Stemberg, R., Error analysis of some Galerkin least squares methods for the elasticity equations, SIAM J. Numer. Anal., 28, 1680-1697 (1991) · Zbl 0759.73055
[20] Kim, T.-Y.; Dolbow, J. D.; Fried, E., A numerical method for a second-gradient theory of incompressible fluid flow, J. Comput. Phys., 223, 551-570 (2007) · Zbl 1183.76809
[21] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101
[22] Fried, E.; Gurtin, M. E., Tranctions, balances, and boundary conditions for nonsimple materials with applications to liquid flow at small length scales, Arch. Ration. Mech. Anal., 182, 513-554 (2006) · Zbl 1104.74006
[23] Fried, E.; Gurtin, M. E., A continuum mechanical theory for turbulence: a generalized NavierStokes-\(α\) equation with boundary conditions, Theor. Comput. Fluid Dyn., 22, 433-470 (2008) · Zbl 1161.76485
[24] Petera, J.; Pittman, J. F.T., Isoparametric hermite elements, Int. J. Numer. Mech. Eng., 37, 3489-3519 (1994) · Zbl 0814.76061
[25] Kim, T.-Y.; Dolbow, J. E., An edge-bubble stabilized finite element method for fourth-order parabolic problems, Finite Elem. Anal. Des., 45, 485-494 (2009)
[26] Blasco, J., An anisotropic pressure-stabilized finite element method for incompressible flow problems, Comput. Methods Appl. Mech. Eng., 197, 3712-3723 (2008) · Zbl 1194.76103
[27] Xia, K.; Yao, H., A Galerkin/least-square finite element formulation for nearly incompressible elasticity/stokes flow, Appl. Math. Model., 31, 513-529 (2007) · Zbl 1155.74049
[28] E.G.D. Carmo, J.P.L. Santos, W.J. Mansur, Uma determinaçÃo sistematíca do parâmetro de calibraçÃo do método Galerkin Least Square (GLS), \(In 30^{ th } \); E.G.D. Carmo, J.P.L. Santos, W.J. Mansur, Uma determinaçÃo sistematíca do parâmetro de calibraçÃo do método Galerkin Least Square (GLS), \(In 30^{ th } \)
[29] J.P.L. Santos, Adaptive strategies for mixed finite element applied to viscoelasticity and incompressible linear models, D.Sc. thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2011 (in Portuguese).; J.P.L. Santos, Adaptive strategies for mixed finite element applied to viscoelasticity and incompressible linear models, D.Sc. thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2011 (in Portuguese).
[30] Kirby, B. J., Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices (2010), Cambridge University Press: Cambridge University Press New York · Zbl 1283.76002
[31] Fortin, M., An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numérique, 11, 341-354 (1977) · Zbl 0373.65055
[32] Fortin, M., Old and new finite elements for incompressible flows, Int. J. Numer. Methods Fluids, 1, 347-364 (1981) · Zbl 0467.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.