×

Zipf’s law for Atlas models. (English) Zbl 1457.60108

Summary: A set of data with positive values follows a Pareto distribution if the log-log plot of value versus rank is approximately a straight line. A Pareto distribution satisfies Zipf’s law if the log-log plot has a slope of \(-1\). Since many types of ranked data follow Zipf’s law, it is considered a form of universality. We propose a mathematical explanation for this phenomenon based on Atlas models and first-order models, systems of strictly positive continuous semimartingales with parameters that depend only on rank. We show that the stationary distribution of an Atlas model will follow Zipf’s law if and only if two natural conditions, conservation and completeness, are satisfied. Since Atlas models and first-order models can be constructed to approximate systems of time-dependent rank-based data, our results can explain the universality of Zipf’s law for such systems. However, ranked data generated by other means may follow non-Zipfian Pareto distributions. Hence, our results explain why Zipf’s law holds for word frequency, firm size, household wealth, and city size, while it does not hold for earthquake magnitude, cumulative book sales, and the intensity of wars, all of which follow non-Zipfian Pareto distributions.

MSC:

60H30 Applications of stochastic analysis (to PDEs, etc.)
91D20 Mathematical geography and demography
91G70 Statistical methods; risk measures

References:

[1] Atkinson, A. B., Piketty, T. and Saez, E. (2011). Top incomes in the long run of history. J. Econom. Lit.49, 3-71.
[2] Axtell, R. (2001). Zipf distribution of U.S. firm sizes. Science293, 1818-1820.
[3] Bak, P. (1996). How Nature Works. Springer, New York. · Zbl 0894.00007
[4] Banner, A., Fernholz, R. and Karatzas, I. (2005). On Atlas models of equity markets. Ann. Appl. Prob.15, 2296-2330. · Zbl 1099.91056
[5] Banner, A. and Ghomrasni, R. (2008). Local times of ranked continuous semimartingales. Stoch. Process Appl.118, 1244-1253. · Zbl 1147.60052
[6] Bass, R. and Pardoux, E. (1987). Uniqueness for diffusions with piecewise constant coefficients. Prob. Theory Relat. Fields76, 557-572. · Zbl 0617.60075
[7] Blanchet, T., Fournier, J. and Piketty, T. (2017). Generalized Pareto curves: theory and applications. Technical report. World Wealth & Income Database.
[8] Brown, R. (1827). Brownian motion. Unpublished experiment.
[9] Bruggeman, C. (2016). Dynamics of large rank-based systems of interacting diffusions. PhD thesis, Columbia University.
[10] Chatterjee, S. and Pal, S. (2010). A phase transition behavior for Brownian motions interacting through their ranks. Prob. Theory Relat. Fields147, 123-159. · Zbl 1188.60049
[11] Dembo, A., Jara, M. and Olla, S. (2017). The infinite Atlas process: convergence to equilibrium. Ann. Inst. H. Poincaré Prob. Statist.55, 607-619. · Zbl 1466.60203
[12] Dembo, A., Shkolnikov, M., Varadhan, S. R. S. and Zeitouni, O. (2016). Large deviations for diffusions interacting through their ranks. Commun. Pure Appl. Math.69, 1259-1313. · Zbl 1341.60010
[13] Dembo, A. and Tsai, L.-C. (2017). Equilibrium fluctuation of the Atlas model. Ann. Prob.45, 4529-4560. · Zbl 1386.60281
[14] Fernholz, E. R. (2002). Stochastic Portfolio Theory. Springer, New York. · Zbl 1049.91067
[15] Fernholz, R., Ichiba, T. and Karatzas, I. (2013). A second-order stock market model. Ann. Finance9, 1-16. · Zbl 1298.91136
[16] Fernholz, R., Ichiba, T. and Karatzas, I. (2013). Two Brownian particles with rank-based characteristics and skew-elastic collisions. Stoch. Process. Appl.123, 2999-3026. · Zbl 1296.60148
[17] Fernholz, R., Ichiba, T., Karatzas, I. and Prokaj, V. (2013). A planar diffusion with rank-based characteristics and perturbed Tanaka equations. Prob. Theory Relat. Fields156, 343-374. · Zbl 1274.60247
[18] Fernholz, R. and Karatzas, I. (2009). Stochastic portfolio theory: an overview. In Mathematical Modelling andNumerical Methods in Finance: Special Volume, Handbook of Numerical Analysis, eds A. Bensoussan and Q. Zhang, Vol. XV. North-Holland, Amsterdam, pp. 89-168. · Zbl 1180.91267
[19] Fernholz, R. T. and Koch, C. (2016). Why are big banks getting bigger? Working Paper 1604. Federal Reserve Bank of Dallas.
[20] Fernholz, R. T. and Koch, C. (2017). Big banks, idiosyncratic volatility, and systemic risk. Amer. Econom. Rev.107, 603-607.
[21] Gabaix, X. (1999). Zipf’s law for cities: an explanation. Quart. J. Econom.114, 739-767. · Zbl 0952.91059
[22] Gabaix, X. (2009). Power laws in economics and finance. Ann. Rev. Econom.1, 255-294.
[23] Harrison, J. and Reiman, M. (1981). Reflected Brownian motion on an orthant. Ann. Prob.9, 302-308. · Zbl 0462.60073
[24] Harrison, J. M. and Williams, R. J. (1987). Brownian models of open queueing networks with homogeneous customer populations. Stochastics22, 77-115. · Zbl 0632.60095
[25] Harrison, J. M. and Williams, R. J. (1987). Multidimensional reflected Brownian motions having exponential stationary distributions. Ann. Prob.15, 115-137. · Zbl 0615.60072
[26] Ichiba, T. and Karatzas, I. (2010). On collisions of Brownian particles. Ann. Appl. Prob.20, 951-977. · Zbl 1235.60111
[27] Ichiba, T., Karatzas, I. and Shkolnikov, M. (2013). Strong solutions of stochastic equations with rank-based coefficients. Prob. Theory Relat. Fields156, 229-248. · Zbl 1302.60092
[28] Ichiba, T., Pal, S. and Shkolnikov, M. (2013). Convergence rates for rank-based models with applications to portfolio theory. Prob. Theory Relat. Fields156, 415-448. · Zbl 1274.60291
[29] Ichiba, T., Papathanakos, V., Banner, A., Karatzas, I. and Fernholz, R. (2011). Hybrid Atlas models. Ann. Appl. Prob.21, 609-644. · Zbl 1230.60046
[30] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus. Springer, New York. · Zbl 0734.60060
[31] Khas’Minskii, R. Z. (1960). Ergodic properties of recurrent diffusion processes, and stabilization of the solution to the Cauchy problem for parabolic equations. Theory Prob. Appl.5, 179-196. · Zbl 0106.12001
[32] Khas’Minskii, R. Z. (1980). Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Amsterdam. · Zbl 0441.60060
[33] Neumark, D., Wall, B. and Zhang, J. (2011). Do small businesses create more jobs? New evidence for the United States from the National Establishment Time Series. Rev. Econom. Statist.93, 16-29.
[34] Newman, M. E. J. (2005). Power laws, Pareto distributions, and Zipf’s law. Contemp. Phys.46, 323-351.
[35] Pal, S. and Pitman, J. (2008). One-dimensional Brownian particle systems with rank-dependent drifts. Ann. Appl. Prob.18, 2179-2207. · Zbl 1166.60061
[36] Sarantsev, A. (2015). Triple and simultaneous collisions of competing Brownian particles. Electron. J. Prob.20, 1-28. · Zbl 1321.60213
[37] Simon, H. and Bonini, C. (1958). The size distribution of business firms. Amer. Econom. Rev.48, 607-617.
[38] Simon, H. A. (1955). On a class of skew distribution functions. Biometrika42, 425-440. · Zbl 0066.11201
[39] Soo, K. T. (2005). Zipf’s law for cities: a cross-country investigation. Regional Sci. Urban Econom.35, 239-263.
[40] Stroock, D. W. and Varadhan, S. R. S. (2006). Multidimensional Diffusion Processes. Springer, Berlin. · Zbl 1103.60005
[41] Tao, T. (2012). E pluribus unum: from complexity, universality. Daedalus141, 23-34.
[42] Wikipedia (2020). Zipf’s law. https://en.wikipedia.org/wiki/Zipf
[43] Williams, R. J. (1987). Reflected Brownian motion with skew symmetric data in a polyhedral domain. Prob. Theory Relat. Fields75, 459-485. · Zbl 0608.60074
[44] Zipf, G.(1935). The Psychology of Language: An Introduction to Dynamic Philology. MIT Press, Cambridge, MA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.