×

On extremal sections of subspaces of \(L_p\). (English) Zbl 1457.52009

Summary: Let \(m, n \in \mathbb{N}\) and \(p \in (0, \infty)\). For a finite dimensional quasi-normed space \(X = (\mathbb{R}^m, \Vert\cdot\Vert_X)\), let \[ B_p^n(X) = \left\{(x_1, \ldots, x_n) \in \left(\mathbb{R}^m\right)^n : \sum\limits_{i=1}^n \Vert x_i\Vert_X^p \leqslant 1\right\}. \] We show that for every \(p \in (0, 2)\) and \(X\) which admits an isometric embedding into \(L_p\), the function \[ S^{n-1} \ni \theta = (\theta_1, \ldots, \theta_n) \longmapsto \left|B_p^n(X) \cap \left\{(x_1, \ldots, x_n) \in \left(\mathbb{R}^m\right)^n : \sum\limits_{i=1}^n \theta_i x_i = 0 \right\}\right| \] is a Schur convex function of \((\theta_1^2, \ldots, \theta_n^2)\), where \(|\cdot|\) denotes Lebesgue measure. In particular, it is minimized when \(\theta = \left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)\) and maximized when \(\theta = (1, 0, \ldots, 0)\). This is a consequence of a more general statement about Laplace transforms of norms of suitable Gaussian random vectors which also implies dual estimates for the mean width of projections of the polar body \((B_p^n(X))^\circ\) if the unit ball \(B_X\) of \(X\) is in Lewis’ position. Finally, we prove a lower bound for the volume of projections of \(B_\infty^n(X)\), where \(X = (\mathbb{R}^m, \Vert\cdot\Vert_X)\) is an arbitrary quasi-normed space.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry)
52A23 Asymptotic theory of convex bodies
46B20 Geometry and structure of normed linear spaces
46B09 Probabilistic methods in Banach space theory
26B25 Convexity of real functions of several variables, generalizations

References:

[1] Artstein-Avidan, S.; Giannopoulos, A.; Milman, VD, Asymptotic Geometric Analysis. Part I. (2015), Providence: American Mathematical Society, Providence · Zbl 1337.52001 · doi:10.1090/surv/202
[2] Ball, K., Cube slicing in \({ R}^n\), Proc. Am. Math. Soc., 97, 3, 465-473 (1986) · Zbl 0601.52005
[3] Ball, K.; Lindenstrauss, J.; Milman, VD, Volumes of sections of cubes and related problems, Geometric Aspects of Functional Analysis (1987/88), 251-260 (1989), Berlin: Springer, Berlin · Zbl 0674.46008 · doi:10.1007/BFb0090058
[4] Ball, K., Shadows of convex bodies, Trans. Am. Math. Soc., 327, 2, 891-901 (1991) · Zbl 0746.52007 · doi:10.1090/S0002-9947-1991-1035998-3
[5] Ball, K., Volume ratios and a reverse isoperimetric inequality, J. Lond. Math. Soc. (2), 44, 2, 351-359 (1991) · Zbl 0694.46010 · doi:10.1112/jlms/s2-44.2.351
[6] Barthe, F., Mesures unimodales et sections des boules \(B^n_p\), C. R. Acad. Sci. Paris Sér. I Math., 321, 7, 865-868 (1995) · Zbl 0876.46011
[7] Barthe, F., On a reverse form of the Brascamp-Lieb inequality, Invent. Math., 134, 2, 335-361 (1998) · Zbl 0901.26010 · doi:10.1007/s002220050267
[8] Barthe, F., Extremal properties of central half-spaces for product measures, J. Funct. Anal., 182, 1, 81-107 (2001) · Zbl 0984.28003 · doi:10.1006/jfan.2000.3708
[9] Barthe, F.; Milman, VD; Schechtman, G., A continuous version of the Brascamp-Lieb inequalities, Geometric Aspects of Functional Analysis, 53-63 (2004), Berlin: Springer, Berlin · Zbl 1084.26011 · doi:10.1007/978-3-540-44489-3_6
[10] Barthe, F.; Guédon, O.; Mendelson, S.; Naor, A., A probabilistic approach to the geometry of the \(l^n_p\)-ball, Ann. Probab., 33, 2, 480-513 (2005) · Zbl 1071.60010 · doi:10.1214/009117904000000874
[11] Bolker, ED, A class of convex bodies, Trans. Am. Math. Soc., 145, 323-345 (1969) · Zbl 0194.23102 · doi:10.1090/S0002-9947-1969-0256265-X
[12] Bretagnolle, J., Dacunha-Castelle, D., Krivine, J.-L.: Lois stables et espaces \(L^p\). Ann. Inst. H. Poincaré Sect. B (N.S.) 2, 231-259 (1965/1966) · Zbl 0139.33501
[13] Brzezinski, P., Volume estimates for sections of certain convex bodies, Math. Nachr., 286, 17-18, 1726-1743 (2013) · Zbl 1285.52003 · doi:10.1002/mana.201200119
[14] Caetano, AM, Weyl numbers in sequence spaces and sections of unit balls, J. Funct. Anal., 106, 1, 1-17 (1992) · Zbl 0785.46027 · doi:10.1016/0022-1236(92)90059-R
[15] Eskenazis, A.; Nayar, P.; Tkocz, T., Gaussian mixtures: entropy and geometric inequalities, Ann. Probab., 46, 5, 2908-2945 (2018) · Zbl 1428.60036 · doi:10.1214/17-AOP1242
[16] Feller, W., An Introduction to Probability Theory and Its Applications (1971), New York: Wiley, New York · Zbl 0219.60003
[17] Gluskin, E.; Milman, V.; Milman, VD; Schechtman, G., Geometric probability and random cotype 2, Geometric Aspects of Functional Analysis, 123-138 (2004), Berlin: Springer, Berlin · Zbl 1087.46006 · doi:10.1007/978-3-540-44489-3_12
[18] Hadwiger, H., Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math., 76, 410-418 (1972) · Zbl 0248.52012 · doi:10.1007/BF01297304
[19] Hensley, D., Slicing the cube in \({ R}^n\) and probability (bounds for the measure of a central cube slice in \({ R}^n\) by probability methods), Proc. Am. Math. Soc., 73, 1, 95-100 (1979) · Zbl 0394.52006
[20] Johnson, WB; Schechtman, G.; Johnson, WB; Schechtman, G., Finite dimensional subspaces of \(L_p\), Handbook of the Geometry of Banach Spaces, 837-870 (2001), Amsterdam: North-Holland, Amsterdam · Zbl 1012.46012 · doi:10.1016/S1874-5849(01)80021-8
[21] Kadec’, MĬ, Linear dimension of the spaces \(L_p\) and \(l_q\), Uspehi Mat. Nauk, 13, 6-84, 95-98 (1958) · Zbl 0087.10802
[22] Koldobsky, A., An application of the Fourier transform to sections of star bodies, Israel J. Math., 106, 157-164 (1998) · Zbl 0916.52002 · doi:10.1007/BF02773465
[23] Koldobsky, A., Fourier Analysis in Convex Geometry (2005), Providence: American Mathematical Society, Providence · Zbl 1082.52002 · doi:10.1090/surv/116
[24] Koldobsky, A., Zymonopoulou, M.: Extremal sections of complex \(l_p\)-balls. \(0<p\leqslant 2\). Stud. Math. 159(2), 185-194 (2003) (in Polish) · Zbl 1053.52005
[25] Lewis, DR, Finite dimensional subspaces of \(L_p\), Stud. Math., 63, 2, 207-212 (1978) · Zbl 0406.46023 · doi:10.4064/sm-63-2-207-212
[26] Li, A-J; Huang, Q.; Xi, D., Sections and projections of \(L_p\)-zonoids and their polars, J. Geom. Anal., 28, 1, 427-447 (2018) · Zbl 1387.52017 · doi:10.1007/s12220-017-9827-y
[27] Liakopoulos, D-M, Reverse Brascamp-Lieb inequality and the dual Bollobás-Thomason inequality, Arch. Math. (Basel), 112, 3, 293-304 (2019) · Zbl 1409.52007 · doi:10.1007/s00013-018-1262-1
[28] Loomis, LH; Whitney, H., An inequality related to the isoperimetric inequality, Bull. Am. Math. Soc, 55, 961-962 (1949) · Zbl 0035.38302 · doi:10.1090/S0002-9904-1949-09320-5
[29] Lutwak, E.; Yang, D.; Zhang, G., Volume inequalities for subspaces of \(L_p\), J. Differ. Geom., 68, 1, 159-184 (2004) · Zbl 1119.52006 · doi:10.4310/jdg/1102536713
[30] Lutwak, E.; Yang, D.; Zhang, G., \(L_p\) John ellipsoids., Proc. Lond. Math. Soc. (3), 90, 2, 497-520 (2005) · Zbl 1074.52005 · doi:10.1112/S0024611504014996
[31] Marshall, AW; Proschan, F., An inequality for convex functions involving majorization, J. Math. Anal. Appl., 12, 87-90 (1965) · Zbl 0145.28601 · doi:10.1016/0022-247X(65)90056-9
[32] Meyer, M.; Pajor, A., Sections of the unit ball of \(L^n_p\), J. Funct. Anal., 80, 1, 109-123 (1988) · Zbl 0667.46004 · doi:10.1016/0022-1236(88)90068-7
[33] Oleszkiewicz, K.; Milman, VD; Schechtman, G., On \(p\)-pseudostable random variables, Rosenthal spaces and \(l^n_p\) ball slicing, Geometric Aspects of Functional Analysis, 188-210 (2003), Berlin: Springer, Berlin · Zbl 1036.60013 · doi:10.1007/978-3-540-36428-3_16
[34] Oleszkiewicz, K.; Pełczyński, A., Polydisc slicing in \({ C}^n\), Stud. Math., 142, 3, 281-294 (2000) · Zbl 0971.32018 · doi:10.4064/sm-142-3-281-294
[35] Schechtman, G.; Zvavitch, A., Embedding subspaces of \(L_p\) into \(l^N_p, 0<p<1\), Math. Nachr., 227, 133-142 (2001) · Zbl 1046.46011 · doi:10.1002/1522-2616(200107)227:1<133::AID-MANA133>3.0.CO;2-8
[36] Schneider, R., Zonoids whose polars are zonoids, Proc. Am. Math. Soc., 50, 365-368 (1975) · Zbl 0339.52002 · doi:10.1090/S0002-9939-1975-0470857-2
[37] Vaaler, JD, A geometric inequality with applications to linear forms, Pac. J. Math., 83, 2, 543-553 (1979) · Zbl 0465.52011 · doi:10.2140/pjm.1979.83.543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.