×

Embedding Schramm spaces into Chanturiya classes. (English) Zbl 1457.42007

Necessary and sufficient conditions for the embedding of various spaces of functions of generalized bounded variation into the space \(H_p^{\omega}\) were studied by several mathematicians.
In the present paper a necessary and sufficient condition for the embedding of the Schramm space \(\Phi B V\) into the Chanturiya class \(V[\nu]\) is given. Namely, it is proved that if \(\Phi\) is a Schramm sequence and \(\nu\) is a modulus of variation, then \(\Phi B V\) embeds into \(V[\nu]\) if and only if \[ \limsup_{n\to \infty}\frac{n\Phi^{-1}_{n}(1)}{\nu(n)}<\infty . \] Applying this statement and Watermans theorem on \(HB V\) the author proves that if \(\Phi\) is a Schramm sequence that satisfies the condition \[ \sum_{n=1}^{\infty}\frac{\Phi^{-1}_{n}(1)}{ n} <\infty, \] then the Fourier series of any function \(f\) in \(\Phi B V\) converges everywhere. Furthermore, this convergence is uniform over any closed interval of continuity points of \(f\).

MSC:

42A20 Convergence and absolute convergence of Fourier and trigonometric series
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
26A45 Functions of bounded variation, generalizations
Full Text: DOI

References:

[1] Appell, J.; Banaś, J.; Merentes, N., Bounded Variation and Around. De Gruyter Series Nonlinear Analysis and Applications (2013), Berlin: Walter de Gruyter, Berlin · Zbl 1282.26001
[2] Avdispahić, M., On the classes \(\Lambda BV\) and \(V[\nu ]\), Proc. Am. Math. Soc., 95, 230-234 (1985) · Zbl 0574.26008 · doi:10.2307/2044518
[3] Avdispahić, M., Concepts of generalized bounded variation and the theory of Fourier series, Int. J. Math. Math. Sci., 9, 223-244 (1986) · Zbl 0595.42012 · doi:10.1155/S0161171286000285
[4] Chanturiya, ZA, The modulus of variation of a function and its application in the theory of Fourier series, Sov. Math. Dokl., 15, 67-71 (1974) · Zbl 0295.26008
[5] Chanturiya, ZA, On uniform convergence of fourier series, Math. USSR Sb., 29, 475-495 (1976) · Zbl 0376.42003 · doi:10.1070/SM1976v029n04ABEH003682
[6] Chistyakov, VV, The optimal form of selection principles for functions of a real variable, J. Math. Anal. Appl., 310, 609-625 (2005) · Zbl 1087.26006 · doi:10.1016/j.jmaa.2005.02.028
[7] Chlebus, E., An approximate formula for a partial sum of the divergent \(p\)-series, Appl. Math. Lett., 22, 732-737 (2009) · Zbl 1165.60307 · doi:10.1016/j.aml.2008.07.007
[8] Goffman, C.; Nishiura, T.; Waterman, D., Homeomorphisms in Analysis, Mathematical Surveys and Monographs (1997), Providence: American Mathematical Society, Providence · Zbl 0890.26001
[9] Goginava, U., On the embedding of Waterman class in the class \(H^\omega_p\), Ukr. Math. J., 57, 1818-1824 (2005) · Zbl 1096.26004 · doi:10.1007/s11253-006-0031-7
[10] Goodarzi, MM; Hormozi, M.; Memić, N., Relations between Schramm spaces and generalized Wiener classes, J. Math. Anal. Appl., 450, 829-838 (2017) · Zbl 1369.46030 · doi:10.1016/j.jmaa.2017.01.033
[11] Goodarzi, MM; Hormozi, M.; Memić, N., Embedding generalized Wiener classes into Lipschitz spaces, Math. Inequal. Appl., 22, 291-296 (2019) · Zbl 1433.46024
[12] Hormozi, M., Inclusion of \(\Lambda BV^{(p)}\) spaces in the classes \(H^\omega_q\), J. Math. Anal. Appl., 404, 195-200 (2013) · Zbl 1304.26007 · doi:10.1016/j.jmaa.2013.02.012
[13] Hormozi, M.; Prus-Wiśniowski, F.; Rosengren, H., Inclusions of Waterman-Shiba spaces into generalized Wiener classes, J. Math. Anal. Appl., 419, 428-432 (2014) · Zbl 1309.46015 · doi:10.1016/j.jmaa.2014.03.096
[14] Hardy, GH; Littlewood, JE, A convergence criterion for Fourier series, Math. Z., 28, 612-634 (1928) · JFM 54.0301.03 · doi:10.1007/BF01181186
[15] Kreǐn, SG; Petunin, JI; Semenov, EM, Interpolation of Linear Operators, Translations of Mathematical Monographs (2002), Providence: American Mathematical Society, Providence
[16] Kuprikov, YE, Moduli of continuity of functions from Waterman classes, Moscow Univ. Math. Bull., 52, 46-49 (1997) · Zbl 0912.26002
[17] Lagrange, R., Sur les oscillations d’ordre supérieur d’une fonction numérique, Ann. Sci. Ecol. Norm. Sup., 82, 101-130 (1965) · Zbl 0148.03302 · doi:10.24033/asens.1137
[18] Prus-Wiśniowski, F., On inclusion between Waterman classes and Chanturiya classes, Tatra Mt. Math. Publ., 19, 219-227 (2000) · Zbl 0988.26008
[19] Salem, R.: Essais sur les séries trigonométrique, Actualities Sci. Ind. No. 862, Paris (1940) · JFM 66.0280.01
[20] Paul Schembari, N.; Schramm, M., \( \Phi V[h]\) and Riemann-Stieltjes integration, Colloq. Math., 60/61, 2, 421-441 (1990) · Zbl 0741.26007 · doi:10.4064/cm-60-61-2-421-441
[21] Schramm, M., Functions of \(\Phi \)-bounded variation and Riemann-Stieltjes integration, Trans. Am. Math. Soc., 267, 49-63 (1985) · Zbl 0567.26009
[22] Schramm, M.; Waterman, D., On the magnitude of Fourier coefficients, Proc. Am. Math. Soc., 85, 407-410 (1982) · Zbl 0573.42003 · doi:10.1090/S0002-9939-1982-0656113-1
[23] Shiba, M., On the absolute convergence of Fourier series of functions of class \(\Lambda BV^{(p)}\), Sci. Rep. Fac. Ed. Fukushima Univ., 30, 7-10 (1980) · Zbl 0543.42006
[24] Wang, H., Embedding of Lipschitz classes into classes of functions of \(\Lambda \)-bounded variation, J. Math. Anal. Appl., 354, 698-703 (2009) · Zbl 1179.26033 · doi:10.1016/j.jmaa.2009.01.033
[25] Wang, H., Embedding of classes of functions with \(\Lambda_{\varphi }\)-bounded variation into generalized Lipschitz classes, Math. Inequal. Appl., 18, 1463-1471 (2015) · Zbl 1331.26012
[26] Waterman, D., On convergence of Fourier series of functions of bounded generalized variation, Stud. Math., 44, 107-117 (1972) · Zbl 0207.06901 · doi:10.4064/sm-44-2-107-117
[27] Wiener, N., The quadratic variation of a function and its Fourier coefficients, Mass. J. Math., 3, 72-94 (1924) · JFM 50.0203.01
[28] Wu, X., Embedding of classes of functions with bounded \(\Phi \)-variation into generalized Lipschitz spaces, Acta Math. Hungar., 150, 1, 247-257 (2016) · Zbl 1389.26018 · doi:10.1007/s10474-016-0656-4
[29] Young, LC, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. Ann., 115, 581-612 (1938) · Zbl 0019.01507 · doi:10.1007/BF01448958
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.