×

Knot-theoretic ternary groups. (English) Zbl 1457.20055

With the problem of coloring diagrams ternary groups \((G,[\ ])\) are associated satisfying the following two axioms: \([[abc]cd]=[[ab[bcd]] [bcd]d]\) and \([ab[bcd]]=[a[abc][[abc]cd]]\). Such ternary groups are called knot-theoretic ternary groups. Each knot-theoretic ternary group \((G,[\ ])\) can be presented in the form \([xyz]=x-y+z+a\), where \((G,+)\) is an abelian group and \(a\) is a fixed element of order one or two in \((G,+)\). So such ternary groups are a special case of flocks and Vagner’s heaps.
The first part (Sections 1–5) of this paper contains elementary properties of such groups. All these properties are a consequence of the Hosszú-Gluskin theorem (see for example [the reviewer and K. Głazek, Discrete Math. 308, No. 21, 4861–4876 (2008; Zbl 1153.20050)]) and results obtained earlier for flocks [the reviewer, Algebras Groups Geom. 16, No. 3, 329–354 (1999; Zbl 0996.20055)].
In the last section, knot-theoretic ternary groups are used to study of curves immersed in compact surfaces.

MSC:

20N15 \(n\)-ary systems \((n\ge 3)\)
57K10 Knot theory
57K14 Knot polynomials
08A05 Structure theory of algebraic structures

References:

[1] A. Borowiec, W. A. Dudek and S. Duplij, Bi-element representations of ternary groups, Comm. Algebra 34 (2006), 1651-1670. · Zbl 1101.20050
[2] R. Deviatov, Combinatorial knot invariants that detect trefoils, J. Knot Theory Ramif. 18 (2009), 1193-1203. · Zbl 1183.57004
[3] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1929), 1-19. · JFM 54.0152.01
[4] W. A. Dudek, Remarks on n-groups, Demonstratio Math. 13 (1980), 165-181. · Zbl 0447.20052
[5] W. A. Dudek and K. Głazek, Around the Hosszú-Gluskin theorem for n-ary groups, Discrete Math. 308 (2008), 4861-4876. · Zbl 1153.20050
[6] W. A. Dudek and J. Michalski, On retracts of polyadic groups, Demonstratio Math. 17 (1984), 281-301. · Zbl 0573.20067
[7] K. Głazek and B. Gleichgewicht, Abelian n-groups, in: Universal Algebra (Esztergom, 1977), B. Csákány et al. (eds.), Colloq. Math. Soc. János Bolyai 29, North-Holland, Amsterdam, 1982, 321-329. · Zbl 0487.20042
[8] S. Kamada, Knot invariants derived from quandles and racks, Geom. Topol. Monogr. 4 (2002), 103-117. · Zbl 1037.57005
[9] L. H. Kauffman, Knots and Physics, 4th ed., Ser. Knots and Everything, World Sci., Singapore, 2013. · Zbl 1266.57001
[10] L. H. Kauffman, Virtual knot theory, Eur. J. Combin. 20 (1999), 663-691. · Zbl 0938.57006
[11] D. H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 54 (1932), 329-338. · Zbl 0004.19703
[12] S. Nelson and S. Pico, Virtual tribrackets, J. Knot Theory Ramif. 28 (2019), no. 4, art. 1950026, 12 pp. · Zbl 1426.57029
[13] M. Niebrzydowski, On some ternary operations in knot theory, Fund. Math. 225 (2014), 259-276. · Zbl 1294.57008
[14] M. Niebrzydowski, Homology of ternary algebras yielding invariants of knots and knotted surfaces, arXiv:1706.04307 (2017). · Zbl 1464.57004
[15] E. L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350. · Zbl 0025.01201
[16] A. B. Romanowska and J. D. H. Smith, Modes, World Sci., River Edge, NJ, 2002. · Zbl 1012.08001
[17] G. O. Strawn, Results in polyadic group theory, Ph.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.