×

Simple supermodules over Lie superalgebras. (English) Zbl 1457.17010

The authors consider a classification problem in representation theory of Lie superalgebras. In general, for a Lie superalgebra \(\mathfrak{g}\), a classification of simple \(\mathfrak{g}\)-supermodules is, naturally, at least as hard as a classification of simple modules over the even Lie algebra part \(\mathfrak{g}_0\) (under usual notation of the area).
It is shown that, for many Lie superalgebras admitting a compatible \(\mathbb Z\)-grading, the Kac induction functor gives rise to a bijection between simple supermodules over a Lie superalgebra and simple supermodules over the even part of this Lie superalgebra, providing a reduction to this classification problem for some relevant types of Lie superalgebras. The authors also provide several criteria for simplicity of certain Kac modules and study the the rough structure of Kac supermodules.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras

References:

[1] Bagci, Irfan; Christodoulopoulou, Konstantina; Wiesner, Emilie, Whittaker categories and Whittaker modules for Lie superalgebras, Comm. Algebra, 42, 11, 4932-4947 (2014) · Zbl 1364.17008 · doi:10.1080/00927872.2013.827692
[2] Bavula, V.; van Oystaeyen, F., The simple modules of the Lie superalgebra \({\text{osp}}(1,2)\), J. Pure Appl. Algebra, 150, 1, 41-52 (2000) · Zbl 1006.17009 · doi:10.1016/S0022-4049(99)00024-9
[3] Bell, Allen D.; Farnsteiner, Rolf, On the theory of Frobenius extensions and its application to Lie superalgebras, Trans. Amer. Math. Soc., 335, 1, 407-424 (1993) · Zbl 0811.16013 · doi:10.2307/2154275
[4] Bernstein, J. N.; Gel\cprime fand, S. I., Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math., 41, 2, 245-285 (1980) · Zbl 0445.17006
[5] Bern\v{s}te\u{\i}n, I. N.; Gel\cprime fand, I. M.; Gel\cprime fand, S. I., A certain category of \({\mathfrak{g}} \)-modules, Funkcional. Anal. i Prilo\v{z}en., 10, 2, 1-8 (1976)
[6] Block, Richard E., The irreducible representations of the Lie algebra \({\mathfrak{s}}{\mathfrak{l}}(2)\) and of the Weyl algebra, Adv. in Math., 39, 1, 69-110 (1981) · Zbl 0454.17005 · doi:10.1016/0001-8708(81)90058-X
[7] Boyallian, Carina; Meinardi, Vanesa, Irreducible continuous representations of the simple linearly compact \(n\)-Lie superalgebra of type \(W\), J. Algebra, 490, 493-517 (2017) · Zbl 1420.17004 · doi:10.1016/j.jalgebra.2017.07.014
[8] Cai, Yan-an; Zhao, Kaiming, Module structure on \(\mathcal{U}(H)\) for basic Lie superalgebras, Toyama Math. J., 37, 55-72 (2015) · Zbl 1395.17017
[9] Cheng, Shun-Jen; Wang, Weiqiang, Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics 144, xviii+302 pp. (2012), American Mathematical Society, Providence, RI · Zbl 1271.17001 · doi:10.1090/gsm/144
[10] C.-W. Chen, K. Coulembier, and V. Mazorchuk, Translated simple modules for Lie algebras and simple supermodules for Lie superalgebras, to appear in Mathematische Zeitschrift. Preprint 1807.03834 · Zbl 1486.17012
[11] Cheng, Shun-Jen; Mazorchuk, Volodymyr; Wang, Weiqiang, Equivalence of blocks for the general linear Lie superalgebra, Lett. Math. Phys., 103, 12, 1313-1327 (2013) · Zbl 1376.17010 · doi:10.1007/s11005-013-0642-5
[12] Coulembier, Kevin, The primitive spectrum of a basic classical Lie superalgebra, Comm. Math. Phys., 348, 2, 579-602 (2016) · Zbl 1405.17026 · doi:10.1007/s00220-016-2667-y
[13] Dimitrov, Ivan; Mathieu, Olivier; Penkov, Ivan, On the structure of weight modules, Trans. Amer. Math. Soc., 352, 6, 2857-2869 (2000) · Zbl 0984.17006 · doi:10.1090/S0002-9947-00-02390-4
[14] Dixmier, Jacques, Enveloping algebras, Graduate Studies in Mathematics 11, xx+379 pp. (1996), American Mathematical Society, Providence, RI · Zbl 0867.17001 · doi:10.1090/gsm/011
[15] Duflo, Michel, Sur la classification des id\'{e}aux primitifs dans l’alg\`ebre enveloppante d’une alg\`ebre de Lie semi-simple, Ann. of Math. (2), 105, 1, 107-120 (1977) · Zbl 0346.17011 · doi:10.2307/1971027
[16] Ferguson, Thomas; Gorelik, Maria; Grantcharov, Dimitar, Bounded highest weight modules over \(\mathfrak{osp}(1,2n)\). Lie algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math. 92, 135-144 (2016), Amer. Math. Soc., Providence, RI · Zbl 1427.17014
[17] Germoni, J\'{e}r\^ome, Indecomposable representations of special linear Lie superalgebras, J. Algebra, 209, 2, 367-401 (1998) · Zbl 0933.17010 · doi:10.1006/jabr.1998.7520
[18] Gorelik, Maria, On the ghost centre of Lie superalgebras, Ann. Inst. Fourier (Grenoble), 50, 6, 1745-1764 (2001) (2000) · Zbl 1063.17006
[19] Gorelik, Maria, Annihilation theorem and separation theorem for basic classical Lie superalgebras, J. Amer. Math. Soc., 15, 1, 113-165 (2002) · Zbl 0985.17010 · doi:10.1090/S0894-0347-01-00382-4
[20] Gorelik, Maria, Strongly typical representations of the basic classical Lie superalgebras, J. Amer. Math. Soc., 15, 1, 167-184 (2002) · Zbl 0985.17011 · doi:10.1090/S0894-0347-01-00381-2
[21] Gorelik, Maria; Grantcharov, Dimitar, Bounded highest weight modules over \(\mathfrak{q}(n)\), Int. Math. Res. Not. IMRN, 22, 6111-6154 (2014) · Zbl 1360.17009 · doi:10.1093/imrn/rnt147
[22] Grantcharov, Dimitar, Coherent families of weight modules of Lie superalgebras and an explicit description of the simple admissible \(\mathfrak{sl}(n+1|1)\)-modules, J. Algebra, 265, 2, 711-733 (2003) · Zbl 1091.17003 · doi:10.1016/S0021-8693(03)00169-8
[23] Irving, Ronald S.; Shelton, Brad, Loewy series and simple projective modules in the category \({\mathcal{O}}_S\), Pacific J. Math., 132, 2, 319-342 (1988) · Zbl 0673.17002
[24] Jantzen, J. C., Einh\"{u}llende Algebren halbeinfacher Lie-Algebren. Proceedings of the International Congress of Mathematicians, Vol. 1, 2, Warsaw, 1983, 393-401 (1984), PWN, Warsaw · Zbl 0541.17001
[25] Joseph, A., Kostant’s problem, Goldie rank and the Gel\cprime fand-Kirillov conjecture, Invent. Math., 56, 3, 191-213 (1980) · Zbl 0446.17006 · doi:10.1007/BF01390044
[26] Kac, V., Representations of classical Lie superalgebras. Differential geometrical methods in mathematical physics, II, Proc. Conf., Univ. Bonn, Bonn, 1977, Lecture Notes in Math. 676, 597-626 (1978), Springer, Berlin · Zbl 0388.17002
[27] Khomenko, Oleksandr; Mazorchuk, Volodymyr, Structure of modules induced from simple modules with minimal annihilator, Canad. J. Math., 56, 2, 293-309 (2004) · Zbl 1071.17004 · doi:10.4153/CJM-2004-014-5
[28] Mazorchuk, Volodymyr, Classification of simple \(\mathfrak{q}_2\)-supermodules, Tohoku Math. J. (2), 62, 3, 401-426 (2010) · Zbl 1276.17005 · doi:10.2748/tmj/1287148620
[29] Mazorchuk, Volodymyr; Miemietz, Vanessa, Serre functors for Lie algebras and superalgebras, Ann. Inst. Fourier (Grenoble), 62, 1, 47-75 (2012) · Zbl 1312.17006
[30] Mazorchuk, Volodymyr; Stroppel, Catharina, Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math., 219, 4, 1363-1426 (2008) · Zbl 1234.17007 · doi:10.1016/j.aim.2008.06.019
[31] Musson, Ian M., A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math., 91, 2, 252-268 (1992) · Zbl 0799.17008 · doi:10.1016/0001-8708(92)90018-G
[32] Musson, Ian M., Lie superalgebras and enveloping algebras, Graduate Studies in Mathematics 131, xx+488 pp. (2012), American Mathematical Society, Providence, RI · Zbl 1255.17001 · doi:10.1090/gsm/131
[33] Scheunert, Manfred, The theory of Lie superalgebras, Lecture Notes in Mathematics 716, x+271 pp. (1979), Springer, Berlin · Zbl 0407.17001
[34] Serganova, Vera, On representations of the Lie superalgebra \(p(n)\), J. Algebra, 258, 2, 615-630 (2002) · Zbl 1032.17008 · doi:10.1016/S0021-8693(02)00645-2
[35] Wei, Zhu; Zhang, Yongzheng; Zhang, Qingcheng, Simple modules for some Cartan-type Lie superalgebras, Hacet. J. Math. Stat., 44, 1, 129-152 (2015) · Zbl 1361.17018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.