×

Local mappings generated by multiplication on rings of matrices. (English) Zbl 1457.16037

Let \(A\) be an associative ring and \(\nabla :A\to A\) be an additive map. If for each \(x\in A\) there exists an element \(a_x\) (depending on \(x\)) in \(A\) such that \(\nabla (x)=a_xx\) (resp., \(\nabla (x)=xa_x\)), then \(\nabla \) is called a local left (resp., right) multiplier. If there exists an \(a\in A\) such that \(\nabla (x)=ax\) (resp., \(\nabla (x)=xa\)) for all \(x\in A\), then the map \(\nabla \) is called a left (resp., right) multiplier.
Let \(R\) be a unital ring with invertible element 2. An additive map \(\psi :R\to R\) is called a local Jordan multiplier if for each \(x\in R\) there exists an element \(a_x\) (depending on \(x\)) in \(R\) such that \(\psi (x)=\frac{1}{2}(a_xx+xa_x)\). If there exists an element \(a\in R\) such that \(\psi (x)=\frac{1}{2}(ax+xa)\) for all \(x\in R\), then the additive mapping \(\psi \) is called a Jordan multiplier.,
In the paper under review, it is proved that every local left (resp., right) multiplier on the matrix ring over a division ring is a left (resp., right) multiplier. It is also shown that every local Jordan multiplier on the Jordan ring of symmetric matrices over the field of rational numbers is a Jordan multiplier.

MSC:

16W10 Rings with involution; Lie, Jordan and other nonassociative structures
16S50 Endomorphism rings; matrix rings
17C50 Jordan structures associated with other structures
15A30 Algebraic systems of matrices
Full Text: DOI

References:

[1] Gleason, A. M., A characterization of maximal ideals, J. Analuse Math., 19, 171-172 (1967) · Zbl 0148.37502 · doi:10.1007/BF02788714
[2] Kohane, J. P.; Żelazko, W., A characterization of maximal ideals in commutative Banach algebras, Studia Math., 29, 339-343 (1968) · Zbl 0155.45803 · doi:10.4064/sm-29-3-339-343
[3] Kadison, R., Local derivations, J. Algebra, 130, 494-509 (1990) · Zbl 0751.46041 · doi:10.1016/0021-8693(90)90095-6
[4] Larson, D.; Sourour, A., Local derivations and local automorphisms, Proc. Sympos. Pure Math., 51, 187-194 (1990) · Zbl 0713.47045 · doi:10.1090/pspum/051.2/1077437
[5] Sh. A. Ayupov and F. N. Arzikulov, “Description of 2-local and local derivations on some Lie rings of skew-adjoint matrices.” Linear Multilinear Algebra (2018). doi: 10.1080/03081087.2018.1517719 · Zbl 1472.17062
[6] Crist, R., Local derivations on operator algebras, J. Funct. Anal., 135, 72-92 (1996) · Zbl 0902.46046 · doi:10.1006/jfan.1996.0004
[7] Hadwin, D.; Li, J., Local derivations and local automorphisms, J. Math. Anal. Appl., 290, 702-714 (2004) · Zbl 1044.46040 · doi:10.1016/j.jmaa.2003.10.015
[8] Hadwin, D.; Li, J., Local derivations and local automorphisms on some algebras, J. Operator Theory, 60, 1, 29-44 (2008) · Zbl 1150.47024
[9] He, J.; Li, J.; An, G.; Huang, W., Characterizations of 2-local derivations and local Lie derivations on some algebras, Sib. Math. J., 59, 912-926 (2018) · Zbl 1409.46041 · doi:10.1134/S0037446618040146
[10] J. He, J. Li, and D. Zhao, “Derivations, local and 2-local derivations on some algebras of operators on Hilbert C*-modules,” Mediterr. J. Math. 14 (230), (2017). doi: 10.1007/s00009-017-1032-5 · Zbl 06832621
[11] Jing, W., Local derivations on reflexive algebras II, Proc. Amer. Math. Soc., 129, 1733-1737 (2001) · Zbl 0969.47046 · doi:10.1090/S0002-9939-01-05792-6
[12] Johnson, B., Local derivations on C*-algebras are derivations, Trans. Amer. Math. Soc., 353, 313-325 (2001) · Zbl 0971.46043 · doi:10.1090/S0002-9947-00-02688-X
[13] Li, J.; Pan, Z., Annihilator-preserving maps, multipliers and local derivations, Linear Algebra Appl., 432, 5-13 (2010) · Zbl 1188.47028 · doi:10.1016/j.laa.2009.06.002
[14] Liu, D.; Zhang, J., Local Lie derivations on certain operator algebras, Ann. Funct. Anal., 8, 270-280 (2017) · Zbl 1373.47035 · doi:10.1215/20088752-0000012X
[15] Liu, D.; Zhang, J., Local Lie derivations of factor von Neumann algebras, Linear Algebra Appl., 519, 208-218 (2017) · Zbl 1478.47034 · doi:10.1016/j.laa.2017.01.004
[16] Pang, Y.; Yang, W., Derivations and local derivations on strongly double triangle subspace lattice algebras, Linear Multilinear Algebra, 58, 855-862 (2010) · Zbl 1202.47091 · doi:10.1080/03081080903086427
[17] Zhang, J.; Ji, G.; Cao, H., Local derivations of nest subalgebras of von Neumann algebras, Linear Algebra Appl., 392, 61-69 (2004) · Zbl 1067.46063 · doi:10.1016/j.laa.2004.05.015
[18] Zhang, J.; Pan, F.; Yang, A., Local derivations on certain CSL algebras, Linear Algebra Appl., 413, 93-99 (2006) · Zbl 1082.47032 · doi:10.1016/j.laa.2005.08.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.